Why two Higgs are better than one?

or...

Search for Higgs boson pair production in the two bottom quarks plus two photons final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

arXiv:2112.11876

Project of group E: Searches at the LHC.

C-CRET Collaboration (CERN Commission of Recreational Experiments ouTside)

CERN School of High Energy Physics, Chile, March 2023
Di-Higgs Searches • Motivations

- Study the Higgs potential still untested!

\[V(H) = -\mu^2 |H|^2 + \lambda |H|^4 \]

- Origin of the EW scale (Hierarchy Problem)

- Baryogenesis → 1st order phase transition

- Metastability of the Higgs vacuum

- Search for new massive scalar (Composite Higgs, 2HDM, SUSY)

Beyond Standard Model (BSM)
Di-Higgs Searches • Signal \((pp \rightarrow HH \rightarrow b\bar{b}\gamma\gamma) \)

1. Non-resonant search

\[\kappa_{\lambda} = \frac{\lambda_{HHH}}{\lambda_{HHH}^{\text{SM}}} \]
Di-Higgs Searches · Signal ($pp \rightarrow HH \rightarrow b\bar{b}\gamma\gamma$)

1. Non-resonant search

Search for BSM where the SM is suppressed

Destructive Interference

Off-shell Higgs: higher sensitivity to UV physics

\[\mathcal{M}_{\text{triangle}} \sim +\kappa \chi \log^2 \frac{m_{hh}^2}{m_t^2} \]
\[\mathcal{M}_{\text{box}} \sim -\log^2 \frac{m_{hh}^2}{m_t^2} \]

2. Resonant search

\[m_X > 2m_h \]
Di-Higgs Searches · Background \((pp \rightarrow b\bar{b}\gamma\gamma)\)

Single Higgs: \(\text{ggF, VBF, Wh, Zh, tth, Zh...} \) (Monte-Carlo methods)
Di-Higgs Searches • Background ($pp \rightarrow b\bar{b}\gamma\gamma$)

Single Higgs: $ggF, VBF, Wh, Zh, tth, Zh \ldots$ (Monte-Carlo methods)

Others: $\gamma\gamma + \text{jets}$ (data-driven method)

example + many many more
Analysis strategy

- The analysis considers the **full Run 2** data set of 139 fb$^{-1}$ at 13 TeV.
- Processes from the SM produce a smoothly falling di-photon invariant mass spectrum.
- Different resonant and non-resonant regions and selections.
- **BDTs** (Boosted Decision Trees) are used to:
 - Reject background processes in (non)resonant HH searches.
 - Divide data into invariant mass categories to target different κ_λ ranges.
- Statistical results are obtained from a fit $m_{\gamma\gamma}$.
- The **selection criteria** depend on the mass of the probed scalar particle.
Overview of the ATLAS detector and object selection

Object selection

- Trigger on di-photon events.
- Photons:
 - Tight Identification.
 - Loose Isolation.
- Jets:
 - Particle flow.
 - anti-kT algorithm.
 - b-tagger
Event selection

Alternative 4-body invariant mass is used:

\[m_{bb\gamma\gamma} = m_{bb\gamma\gamma} - m_{bb} - m_{\gamma\gamma} + 250 \text{ GeV} \]

- Improves mass resolution.
- Detector resolutions effects cancel out.

Acceptance x efficiency:
- SM ggF HH: 14%.
- \(m_\chi = 300 \): 8.5%
- \(m_\chi = 500 \): 14%
Selection nonresonant & resonant

Sidebands regions definition from the $m_{\gamma\gamma}$ distribution:
- Sidebands (CRs): $105 \leq m_{\gamma\gamma} \leq 120$ GeV and $130 \leq m_{\gamma\gamma} \leq 160$ GeV.
- Signal region (Higgs peak): $120 < m_{\gamma\gamma} < 130$ GeV

Nonresonant

BDT
$m^*_{bb\gamma\gamma} < 350$ GeV

Resonant

BDT
$m^*_{bb\gamma\gamma} > 350$ GeV

The two BDT scores are combined and BDT cut optimized by maximizing the signal significance.
The signal and backgrounds are extracted by fitting analytic functions to the diphoton invariant mass distributions in the range of 105 -160 GeV.

- Di-Higgs and single-Higgs $m_{\gamma\gamma}$ shapes are modelled using double sided Crystal Balls (gaussian core and power-law tails).

- Background is modelled with simple exponential function:
 \[f_B = \exp(a \cdot m_{\gamma\gamma}) \]
 - Has least number of parameters.
 - Passes spurious signal tests.
Statistical analysis

- Maximum likelihood fit of the $m_{\gamma\gamma}$ (105 < $m_{\gamma\gamma}$ < 160 GeV) has been performed for both Nonresonant & Resonant searches.

$$\mathcal{L} = \prod_{c} \left(\text{Pois}(n_c | N_c(\theta)) \cdot \prod_{i=1}^{n_c} f_c(m_{\gamma\gamma}^i, \theta) \cdot G(\theta) \right)$$

- Fit done simultaneously over all categories.
- Expected number of events N_c considers:
 - Di-Higgs boson production.
 - Single Higgs boson production.
 - Non-resonant background.
 - Spurious signals from background modelling.
Systematic uncertainties

- The analysis is limited by statistical precision.

- The uncertainty on the integrated luminosity is 1.7%, obtained using the LUCID-2 detector.

- Dominant systematics:
 - Spurious signal
 - Parton showering model
 - Photon energy resolution

<table>
<thead>
<tr>
<th>Source</th>
<th>Type</th>
<th>Nonresonant analysis $H \bar{H}$</th>
<th>Resonant analysis $m_X = 300$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon energy resolution</td>
<td>Norm. + Shape</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Jet energy scale and resolution</td>
<td>Normalization</td>
<td>< 0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Flavor tagging</td>
<td>Normalization</td>
<td>< 0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Impact of systematic uncertainties under 2% on the upper limit on the cross section.
Results. **Nonresonant**

- 95% CL upper limit on the nonresonant HH production cross section: 130 fb (expected 180 fb)
- Signal strength: observed (expected) = 4.2 (5.7).
- Upper limits on the HH production cross section are also computed as a function of κ_{λ}:
 - Single-Higgs-boson production cross section, Higgs decay BR and Higgs coupling strength set to SM values.
Results. Nonresonant

- 95% CL upper limit on the nonresonant HH production cross section: 130 fb (expected 180 fb)
- Signal strength: observed (expected) = 4.2 (5.7)
- Upper limits on the HH production cross section are also computed as a function of κ_λ:
 - Single-Higgs-boson production cross section, Higgs decay BR and Higgs coupling strength set to SM values.

No significant excess over the SM background expectations is found.
Results. **Resonant**

- 95% CL upper limit on the production XS of a narrow-width resonance of a hypothetical scalar particle \(X \).
- Limits in range \(251 \leq m_X \leq 1000 \text{ GeV} \):
 - Observed: 640 - 44 fb.
 - Expected: 391 - 46 fb.
- Improvement up to a factor of 3 compared to previous ATLAS analysis.

No significant excess over the SM background expectations is found.
Summary & outlook

- **Di-Higgs searches**: probes the Higgs potential and is a window to BSM physics
- Search for nonresonant & resonant Higgs boson pair production in the $b\bar{b}\gamma\gamma$ final state with Run2 dataset has been discussed.
- Signal is modelled with double sided Crystal Ball, and background with one-parameter exponential
- BDT has been used to separate Signal from backgrounds in order to improve the sensitivity.
- No significant excess over the SM expectations has been found.
- The results improves the ATLAS limits on $HH\rightarrow b\bar{b}\gamma\gamma$ production cross section by up to **factor of five**, and allowed the κ_4 range shrink by about a **factor of two**.

Outlook

→ HL-LHC or Higgs factory will be essential to improve the precision of the measurement of the Higgs self-couplings!
BDT categories

<table>
<thead>
<tr>
<th>Category</th>
<th>σ_{DSCB} [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>High mass BDT tight</td>
<td>1.33 ± 0.01</td>
</tr>
<tr>
<td>High mass BDT loose</td>
<td>1.47 ± 0.02</td>
</tr>
<tr>
<td>Low mass BDT tight</td>
<td>1.50 ± 0.06</td>
</tr>
<tr>
<td>Low mass BDT loose</td>
<td>1.64 ± 0.03</td>
</tr>
<tr>
<td>Resonant $m_X = 300$ GeV</td>
<td>1.78 ± 0.02</td>
</tr>
<tr>
<td>Resonant $m_X = 500$ GeV</td>
<td>1.46 ± 0.01</td>
</tr>
</tbody>
</table>
Jet faking photons estimation

- Signal region is mainly composed of $\gamma\gamma$, γ-jet and dijet events, where one or two jets are mis-identified as photons.
- Contribution of each one of them is estimated using the data driven method (ABCD) in the sidebands regions:
 - $\gamma\gamma$: 85%
 - γ-jet: 15%
 - Dijet: negligible.
- MC is normalized by the $\gamma\gamma$, γ-jet and dijet fractions in the data sidebands regions.
Simulation Samples

<table>
<thead>
<tr>
<th>Process</th>
<th>Generator</th>
<th>PDF set</th>
<th>Showering</th>
<th>Tune</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonresonant ggF HH</td>
<td>Powheg Box v2 +FT [41] [42, 43]</td>
<td>PDFLHC [44]</td>
<td>Pythia 8.2 [67]</td>
<td>A14 [68]</td>
</tr>
<tr>
<td>Nonresonant VBF HH</td>
<td>MadGraph5_AMEC@NLO [47]</td>
<td>NNPDF3.0NLO [69]</td>
<td>Pythia 8.2</td>
<td>A14</td>
</tr>
<tr>
<td>Resonant ggF HH</td>
<td>MadGraph5_AMEC@NLO</td>
<td>NNPDF2.3LO</td>
<td>Herwig 7.1.3 [53, 54]</td>
<td>H7.1 - Default [70]</td>
</tr>
<tr>
<td>ggF H</td>
<td>NNLOPS [71–73] [74, 75]</td>
<td>PDFLHC</td>
<td>Pythia 8.2</td>
<td>AZNLO [76]</td>
</tr>
<tr>
<td>VBF H</td>
<td>Powheg Box v2 [41, 72, 77–83]</td>
<td>PDFLHC</td>
<td>Pythia 8.2</td>
<td>AZNLO</td>
</tr>
<tr>
<td>WH</td>
<td>Powheg Box v2</td>
<td>PDFLHC</td>
<td>Pythia 8.2</td>
<td>AZNLO</td>
</tr>
<tr>
<td>$qq \to ZH$</td>
<td>Powheg Box v2</td>
<td>PDFLHC</td>
<td>Pythia 8.2</td>
<td>AZNLO</td>
</tr>
<tr>
<td>$gg \to ZH$</td>
<td>Powheg Box v2</td>
<td>PDFLHC</td>
<td>Pythia 8.2</td>
<td>AZNLO</td>
</tr>
<tr>
<td>$t\bar{t}H$</td>
<td>Powheg Box v2 [78–80, 83, 84]</td>
<td>NNPDF3.0NLO</td>
<td>Pythia 8.2</td>
<td>A14</td>
</tr>
<tr>
<td>bbH</td>
<td>Powheg Box v2</td>
<td>NNPDF3.0NLO</td>
<td>Pythia 8.2</td>
<td>A14</td>
</tr>
<tr>
<td>tHq</td>
<td>MadGraph5_AMEC@NLO</td>
<td>NNPDF3.0NLO</td>
<td>Pythia 8.2</td>
<td>A14</td>
</tr>
<tr>
<td>tHW</td>
<td>MadGraph5_AMEC@NLO</td>
<td>NNPDF3.0NLO</td>
<td>Pythia 8.2</td>
<td>A14</td>
</tr>
<tr>
<td>$\gamma\gamma$+jets</td>
<td>Sherpa 2.2.4 [58]</td>
<td>NNPDF3.0NNLO</td>
<td>Sherpa 2.2.4</td>
<td>–</td>
</tr>
<tr>
<td>$t\bar{t}\gamma\gamma$</td>
<td>MadGraph5_AMEC@NLO</td>
<td>NNPDF2.3LO</td>
<td>Pythia 8.2</td>
<td>–</td>
</tr>
</tbody>
</table>
Simulation Samples

- Nonresonant ggF HH signal obtained from reweighting method based on simulations with different κ_λ values.

- VBF HH at LO and rescaled to N3LO. κ_λ dependence interpolated from second-order polynomial fit of MC samples.

- Resonant ggF HH generated at LO with 25 different m_χ values in the range of [251, 1000] GeV.
Selection nonresonant & resonant

Nonresonant

- Events are divided in two mass regions: low mass ($m_{bb\gamma\gamma}$ < 350 GeV) and high mass ($m_{bb\gamma\gamma}$ > 350 GeV).
- A BDT is trained for each mass region.
- Two categories for each mass region defined based on the BDT score by maximizing the combined number-counting significance.

Resonant

- Signal are reweighed to match the $m_{bb\gamma\gamma}$ background distribution.
- Two BDT trained to separate the signal against two main sources of backgrounds: $\gamma\gamma$ and single-Higgs backgrounds.
- The two BDT scores are combined and BDT cut optimized by maximizing the signal significance.

Sidebands regions definition from the $m_{\gamma\gamma}$ distribution:

- Sidebands (CRs): $105 \leq m_{\gamma\gamma} \leq 120$ GeV and $130 \leq m_{\gamma\gamma} \leq 160$ GeV.
- Signal region (Higgs peak): $120 < m_{\gamma\gamma} < 130$ GeV
Non-resonant regions definitions

<table>
<thead>
<tr>
<th>Category</th>
<th>Selection criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>High mass BDT tight</td>
<td>$m_{bb\gamma\gamma}^* \geq 350$ GeV, BDT score $\in [0.967, 1]$</td>
</tr>
<tr>
<td>High mass BDT loose</td>
<td>$m_{bb\gamma\gamma}^* \geq 350$ GeV, BDT score $\in [0.857, 0.967]$</td>
</tr>
<tr>
<td>Low mass BDT tight</td>
<td>$m_{bb\gamma\gamma}^* < 350$ GeV, BDT score $\in [0.966, 1]$</td>
</tr>
<tr>
<td>Low mass BDT loose</td>
<td>$m_{bb\gamma\gamma}^* < 350$ GeV, BDT score $\in [0.881, 0.966]$</td>
</tr>
</tbody>
</table>
Resonant regions:

- Two BDTs are trained depending on the final state signature: single-Higgs or di-photon.
- BDTs are combined in quadrature as a function of C_1 and C_2 coefficients.

$$\text{BDT}_{\text{tot}} = \frac{1}{\sqrt{C_1^2 + C_2^2}} \left[C_1 \left(\frac{\text{BDT}_{\gamma\gamma} + 1}{2} \right)^2 + C_2 \left(\frac{\text{BDT}_{\text{SingleH}} + 1}{2} \right)^2 \right]$$

- C_1, C_2 and BDT cut is optimized in a two step process:
 - Get signal significance for each value of C_1, C_2 and BDT cut, for each mass point.
 - Obtain those C_1 and C_2 coefficients that are in a range of 5% around the maximum significance.
The signal and backgrounds are extracted by fitting analytic functions to the diphoton invariant mass distributions in the range of 105 -160 GeV.

- Di-Higgs and single-Higgs $m_{\gamma\gamma}$ shapes are modelled using double sided Crystal Balls (gaussian core and power-law tails),
- MC $m_{\gamma\gamma}$ distribution is fitted to obtain the shape parameters for each category.
 - Insensitive to specific signal processes.
- Background is modelled with simple exponential function:

 $$ f_B = \exp(a \cdot m_{\gamma\gamma}) $$

 - Passes spurious signal tests: fit with a S+B function a background-only MC distribution and extract the fitted signal.
 - Has least number of parameters.
Results. Nonresonant

The number of data events observed in the $120 < m_{\gamma\gamma} < 130$ GeV window, the number of HH signal events expected for $\kappa\lambda = 1$ and for $\kappa\lambda = 10$.

<table>
<thead>
<tr>
<th></th>
<th>High mass BDT tight</th>
<th>High mass BDT loose</th>
<th>Low mass BDT tight</th>
<th>Low mass BDT loose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuum background</td>
<td>4.9$^{+1.1}_{-1.3}$</td>
<td>9.5$^{+1.5}_{-1.7}$</td>
<td>3.7$^{+0.9}_{-1.1}$</td>
<td>24.9$^{+2.3}_{-2.5}$</td>
</tr>
<tr>
<td>Single Higgs boson background</td>
<td>0.67$^{+0.29}_{-0.13}$</td>
<td>1.6$^{+0.6}_{-0.2}$</td>
<td>0.23$^{+0.09}_{-0.03}$</td>
<td>1.40$^{+0.33}_{-0.16}$</td>
</tr>
<tr>
<td>$ggF + bbH$</td>
<td>0.26$^{+0.28}_{-0.16}$</td>
<td>0.4$^{+0.5}_{-0.2}$</td>
<td>0.07$^{+0.06}_{-0.04}$</td>
<td>0.27$^{+0.27}_{-0.16}$</td>
</tr>
<tr>
<td>tH</td>
<td>0.19$^{+0.03}_{-0.03}$</td>
<td>0.49$^{+0.09}_{-0.07}$</td>
<td>0.107$^{+0.022}_{-0.017}$</td>
<td>0.76$^{+0.13}_{-0.11}$</td>
</tr>
<tr>
<td>ZH</td>
<td>0.14$^{+0.05}_{-0.025}$</td>
<td>0.48$^{+0.09}_{-0.07}$</td>
<td>0.046$^{+0.020}_{-0.014}$</td>
<td>0.27$^{+0.06}_{-0.04}$</td>
</tr>
<tr>
<td>Rest</td>
<td>0.074$^{+0.032}_{-0.014}$</td>
<td>0.16$^{+0.07}_{-0.03}$</td>
<td>0.015$^{+0.008}_{-0.004}$</td>
<td>0.111$^{+0.010}_{-0.012}$</td>
</tr>
<tr>
<td>$SM HH (\kappa\lambda = 1)$ signal</td>
<td>0.87$^{+0.10}_{-0.18}$</td>
<td>0.37$^{+0.04}_{-0.07}$</td>
<td>0.046$^{+0.006}_{-0.010}$</td>
<td>0.072$^{+0.008}_{-0.015}$</td>
</tr>
<tr>
<td>ggF</td>
<td>0.86$^{+0.10}_{-0.18}$</td>
<td>0.35$^{+0.04}_{-0.07}$</td>
<td>0.046$^{+0.006}_{-0.010}$</td>
<td>0.072$^{+0.008}_{-0.015}$</td>
</tr>
<tr>
<td>VBF</td>
<td>(12.6$^{+1.4}_{-1.2}$) $\cdot 10^{-3}$</td>
<td>(16.1$^{+1.4}_{-1.2}$) $\cdot 10^{-3}$</td>
<td>(3.2$^{+0.4}_{-0.3}$) $\cdot 10^{-3}$</td>
<td>(6.9$^{+0.5}_{-0.6}$) $\cdot 10^{-3}$</td>
</tr>
<tr>
<td>Alternative $HH (\kappa\lambda = 10)$ signal</td>
<td>6.5$^{+1.0}_{-0.8}$</td>
<td>3.6$^{+0.6}_{-0.4}$</td>
<td>4.5$^{+0.7}_{-0.6}$</td>
<td>8.5$^{+1.3}_{-1.0}$</td>
</tr>
<tr>
<td>Data</td>
<td>2</td>
<td>17</td>
<td>5</td>
<td>14</td>
</tr>
</tbody>
</table>

An alternative statistical analysis consists in determining the best-fit value of the $\kappa\lambda$ coupling modifier. The best-fit value of $\kappa\lambda$ and its uncertainty are obtained by means of a negative log-likelihood scan.
Comparison of the background only-fit with data for the four categories of the nonresonant search
Results . Resonant

Comparison of the Data with the background-only fit for

- \(m_X = 300 \text{ GeV} \) (left)
- \(m_X = 500 \text{ GeV} \) (right)