Combination of ATLAS+CMS measurements on $\gamma\gamma \rightarrow \tau^+\tau^-$ production in Pb+Pb UPC

Yuriy Volkotrub

Iwona Grabowska-Bold, Mateusz Dyndal, Georgios Krintiras

AGH UST

October 25, 2022

(I) < (II) < (II) < (II) < (II) < (II) < (II) < (III) < (IIII) < (III) < (III) < (III) < (I

Outline

Measuring a_{τ} in Pb+Pb UPC

э

A D N A B N A B N A B N

Introdution

Motivation

- Measurements of anomalous magnetic moments of leptons $a_l = \frac{(g-2)l}{2}$ are sensitive to new physics
 - Dirac equation predicts g = 2, but higher-order corrections (QED, weak, hadronic loops, ...) lead to $\neq 2$
- a_{τ} is poorly constrained experimentally: -0.52 < a_{τ} < 0.013 (95% CL) DELPHI, EPJC 35 35 (2004) 159

Due to it can be sensitive to BSM effects

For example, measurements of a_e and a_μ are the most accurate.
 Difference with SM predictions observed for a_e (2.5σ) and a_μ (up to 4.2σ)

Muon g-2 Collaboration, PRL 126 (2021) 141801

$\gamma\gamma \rightarrow \tau^+\tau^-$ production in Pb+Pb UPC

Pb+Pb UPC studies have some advantages over pp collisions:

- $\sim Z^4 \ (Z = 82, Z \approx 4.5 \cdot 10^7)$ enhancement of cross sections
- pprox no hadronic pileup ightarrow exclusivity selections
- Low p_T thresholds in trigger and offline reconstruction
- Zero Degree Calorimeters (ZDC) and a Forward Calorimeter (FCal) (ATLAS) and Forward Hadron (HF) (CMS) calorimeter allow to control event activity above the noise threshold in the forward region
- Exploit $\gamma\gamma \rightarrow \tau\tau$ cross section to set limits on a_{τ}
- $\gamma\gamma \to \tau\tau$ production observed for the first time in hadron collisions at the LHC in 2022

PRD 102 (2020) 113008

Constraints on a_{τ} anomalous magnetic moment

Interest in measuring a_{τ} at the LHC revisited recently

- Theoretical investigations outlined in:
 - F.del Aguila *et al.*, Phys Lett B, 271, 1–2 (1999)
 - S. Atağ, A. Billur, JHEP11 2010, 060 (2010)
 - L. Beresford, J. Liu, PRD 102 (2020) 113008
 - M. Dyndal, M. Schott, M. Klusek-Gawenda, A. Szczurek, PLB 809 (2020) 135682

This paper suggested to use datasets from ATLAS experiment to improve the sensitivity on a_{τ}

Mateusz had a presentation in the past HonexComb meeting

- Final results from 5.02 TeV Pb+Pb UPC from ATLAS
 - ATLAS Collaboration submitted to PRL, arXiv:2204.13478
- Final results from 5.02 TeV Pb+Pb UPC from CMS available at the link
 - CMS Collaboration submitted to PRL, arXiv:2206.05192

CMS measurement overview

- Measurement uses 0.4 nb $^{-1}$ of 2015 UPC data at $\sqrt{s_{\rm NN}} = 5.02$ TeV
- Monte Carlo simulations:
 - signal modeled with: MADGRAPH5 aMC@NLO(v2.6.5) $\gamma \gamma \rightarrow \tau^+ \tau^-$, $\gamma \gamma \rightarrow c\bar{c}$, and $\gamma \gamma \rightarrow b\bar{b}$ PYTHIA8 (v2.1.2) is used for the hadronization and decay
- Event selection categorised with semileptonic decay mode (μ 3T-SR):

Event selection	Fiducial phase-space region		
μ	$p_T^{\mu} > 3.5 \text{ GeV for } \eta < 1.2$ $p_T^{e} > 2.5 \text{ GeV for } 1.2 < \eta < 2.4$		
π^{\pm}	$p_T > 0.5 \text{ GeV}$ for leading π^{\pm} $p_T > 0.3 \text{ GeV}$ for (sub-)sub-leading π^{\pm} $ \eta < 2.5$		
$ au_{3 prong}$	$p_T^{ m vis} > 0.2 \; { m GeV} \ 0.2 \; { m GeV} \ 0.2 \; { m GeV} < m_{\pi\pi\pi} < 1.5 \; { m GeV}$		

CMS measurement overview

- Control plots in the signal region
 - signal MC is scaled to the integrated luminosity
 - good agreedment between the measured distributions and the sum of the signal simulation and background estimation

• Signal yield estimation

- Binned likelihood fit to a discriminating variable
- The best fit value of the signal strength is $0.99^{+0.16}_{-0.14}$ with $N_{\rm sig} = 77 \pm 12$ of signal events
- Observed significance is more than 5σ
- systematic uncertainties affecting the rate with log-normal priors and the shape with Gaussian prior

HonexComb meeting #15

Yuriy Volkotrub

October 25, 2022 7 / 18

Measuring a_{τ} in Pb+Pb UPC

Overview of uncertainties (CMS)

- Statistical uncertainty is 13%
- The total systematical error is 9.7%. The dominant sources:
 - muon trigger efficiency
 - pion efficiency
 - integrated luminosity
- Total uncertainty comparable to the current theory uncertainty:
 - · difficult to discriminate between existing models
 - model-dependent limits on anomalous moments can be set

СМЅ		
Source		Uncertainty (%)
Muon efficiency	6.7	
Integrated luminosity	5.0	
Pion efficiency	3.6	
Simulation sample size (bin-by-bin)	3.0	
Simulation sample size (efficiency)	1.1	
HF scale effect on bkg shape	0.9	
τ lepton branching fraction	0.6	
Effect on n _{ch} on bkg shape		
Total	9.7	

Yuriy Volkotrub

ATLAS measurement overview

- Measurement uses 1.44 nb $^{-1}$ of 2018 UPC data at $\sqrt{s_{
 m NN}}=5.02$ TeV
- Monte Carlo simulations:
 - signal modeled with: Starlight+Tauola (Pythia8+Photos for QED FSR) samples reweighted to photon flux from SuperChic
- Event selection categorised with semileptonic decay modes:

$$\begin{array}{ll} \mu 1\text{T-SR (46\%)} & \\ muon + 1 \ track \ (e/\mu/\text{hadron ("prong")}) & \\ \mu 3\text{T-SR (19\%):} & \\ muon + 3 \ tracks \ (3 \ hadrons \ (3 \ prongs) \) & \\ \mu e\text{-SR (35\%):} & \\ muon + 1 \ track \ (muon + \text{electron}) & \\ \end{array} \right) \\ \end{array} \begin{array}{l} p_T^\mu > 4 \ \text{GeV}, \ p_T^e > 4 \ \text{GeV}, \\ p_T^{\text{trk}} > 100 \ \text{MeV} & \\ p_T^{\text{clus}} > 1 \ \text{GeV} \ (|\eta| < 2.5), \\ p_T^{\text{trk}} > 100 \ \text{MeV} & \\ \end{array}$$

- Only data in OnOn ZDC category used to suppress photonuclear/hadronic backgrounds
- Simulation Starlight+Tauola reweighted to OnOn with data-driven weights

イロト 不得 トイラト イラト 一日

ATLAS measurement overview

- Total of \sim 650 events across all SRs
- Background contributions at the level of 10%
- Measure $\gamma\gamma \rightarrow \tau\tau$ signal strength and a_{τ} using profile likelihood fit to p_{T}^{μ} distribution in 3 SRs and 2μ -CR
- Good modelling of pre/post-fit predictions with data

HonexComb meeting #15

Yuriy Volkotrub

Overview of uncertainties (ATLAS)

- Detector:
 - muon trigger efficiency
 - muon/electron reconstruction/identification efficiency and calibration
 - track reconstruction efficiency
 - cluster reconstruction efficiency and calibration
- Background:
 - photonuclear background template variation
- Theory:
 - photon flux modelling (SuperChic3 and Starlight)
 - τ decay modelling (Tauola and Pythia8)
 - 0n0n ZDC reweighting variation

Results from both measurements

- CMS: fiducial cross section measured with 16% relative precision (stat.-dominated) (2015 data)
- ATLAS: signal strength measured with 5% relative precision (stat.-dominated) (2018 data)

Results for a_{τ} anomalous magnetic moment

- ATLAS:
 - Observed 68% CL from combined fit: $a_{\tau} \in (-0.051, -0.031)$
 - Observed 95% CL from combined fit:

 $a_{ au} \in (-0.058, -0.012) \cup (-0.06, 0.025)$

- Result for each signal region compatible with unity
- Double-interval structure due to interference of SM and BSM amplitude
- CMS:

•
$$a_{ au} = 0.001^{+0.055}_{-0.089}$$
 at the 68% CL

Combination of $\gamma\gamma \rightarrow \tau\tau \, a_{\tau}$ measurements

- Reproduce post-fit distributions of of p_T^{μ} in the SRs and 2μ -CR (ATLAS) using TRExFitterframework
- Extract "ranking plot" of pre-fit and post-fit impact of individual nuisance parameter (NP) on the determination of a_{τ} (reproduced)
- Combine a_{τ} from both experiments:
 - using BLUE tool at 68% CL interval
 - Using TRExFitter framework based on binned profile likelihood, with statistical inference based on maximum-likelihood principle, profile-likelihood-ratio test-statistics and asymptotic approximation
 - add RooFit workspace for CMS results
 - Fit muon p_T distribution targeting μ +3prong decays (CMS) and μ +3prong, μ +1prong, and μ + e channels (ATLAS)

イロト 不得下 イヨト イヨト 二日

Validation of BLUE tool on light-by-light (LbyL) scattering measurements

Krintiras et al., arXiv:2204.02845

- Available results:
 - ATLAS: 2015 Pb+Pb 0.48 nb⁻¹
 - ATLAS: 2018 Pb+Pb 1.73 nb⁻¹:
 - Kinematics: $E_{{
 m T}\,,\,\gamma}\,>\,2.5$ GeV and $m_{\gamma\,\gamma}\,>\,6$ GeV
 - CMS: 2015 Pb+Pb 0.39 nb⁻¹ Kinematics: $E_{T,\gamma} > 2$ GeV and $m_{\gamma\gamma} > 5$ GeV
- Best linear unbiased estimator (BLUE) method used for averaging cross section
 - in a "common" fiducial phase-space

$$\begin{split} \sigma^{\rm fid} &= 115 \pm 15 ({\rm stat.}) \pm 11 ({\rm syst.}) \\ &\pm 3 ({\rm lumi}) \pm 3 ({\rm theo.}) \; {\rm nb} \end{split}$$

Post-fit distributions

The following results were reproduced after obtaining four workspaces as input to the texttt TRExFitter framework

- Results of combined fit using all regions
- Clear observation ($\geq 5\sigma$) of $\gamma\gamma \rightarrow \tau\tau$ process
- Post-fit distributions with the signal contribution corresponding to the best-fit $a_{\tau} = -0.042$ (reproduced)
- Photon flux modelling well constrained with high-precision and high-purity 2µ-CR (in paper) In progress: preparing a configuration for the correct fit

 Post-fit distributions consistent with the ATLAS results

・ロト ・ 同ト ・ ヨト ・ ヨト

Combining ATLAS+CMS measurements

Systematic uncertainties

- Statistical uncertainty is about 10%
- The total systematical error is 5.6%. The dominant sources:
 - muon trigger efficiency (stat/sys)
 - τ-lepton decay
 - track reconstruction efficiency
- dominant (\approx 20%) pre-fit contribution is photon-flux uncertainty, after the post-fit it becomes sudbominant
- luminosity uncertainty is negligible
- asymptotic behavior of likelihood for the combined fit (Bayesian inference cannot be used, i.e. BLUE tool)

Summary & Outlook

- HI UPCs are high-quality probes to QED and BSM physics
 - UPC data is used to constrain a_{τ} at LHC
 - Both experiments provide their first constraints on a_τ with above 5σ at the LHC
 - ATLAS precision is comparable to the DELPHI@LEP (PDG) results
 - Statistical uncertainties are dominated in both experiments
- Finding a way to combine the results of both experiments