

Hunting For Dark Matter

Jacques Pienaar University of Chicago

14 November 2022

Evidence for Missing Mass

Evidence for Dark Matter

Throughout the lifetime of the universe

Motivates terrestrial based search via direct detection

Dark Matter Candidates are

Massive

Neutral

arXiv:astro-ph/0409280

10000

105

Jacques Pienaar | Dark Interactions | 14 November 2022

Choice of Target

XENON

Xenon is a desirable target

- Hea
 - Heavy Nucleus (A~131), large number of SI interactions
- 50% of Xenon comprises odd isotopes, useful for spin independent interactions
- High nuclear charge (Z=54) and density (ρ=2.83 kg/l) provide self-shielding properties
 - Ultra-clean, as no long lived isotope except ¹³⁶Xe.
- Scintillation wavelength of 178nm means no wavelength shifters are needed.
- Charge and light yield highest amongst noble liquids
- Scalability

XENONnT

XENON

Consists of 3 nested detectors

- Water Cherenkov Muon Veto (retained from XENON1T)
- Gd-loaded water-based Neutron Veto (NV)
- Time Projection Chamber (TPC)

Essential Performance Goals

- High electron lifetime in TPC
- Reduced ²²²Rn background
- <1 neutron event in target exposure requiring NV</p>

Searching for a needle in a haystack

XENON

DM searches are rare event searches Require detailed understanding of backgrounds Electronic recoil backgrounds

- ²²²Rn and ⁸⁵Kr are intrinisc, reduced via distillation
- Material backgrounds minimized through fiducialization
- Xe isotopes and solar neutrinos are irreducible

NR recoil backgrounds

- Neutron and Muon detectors veto neutron events
- Neutrinos (via CEvNS) represent irreducible background to future detectors

6

Two-phase Time Projection Chamber

Signal Dsicrimination

XENON

ER and NR responses calibrated using radioactive sources

Calibration of position dependent TPC response using^{83m}Kr.

Low energy NR and ER bands being modelled from AmBe and ²²⁰Rn data

Signal discrimination using S1/S2 ratio is crucial to traditional WIMP searches

TPC data during AmBe calibration in XENONnT 0 0 Z [cm] z [cm] -30 -30 -60 -60 -90 -90 -120-120 -150-15060 60 0 + 10ml 30 cm 60 30 0 0 AmBe Source Location γ_{lcm}^{0} -30 -60 -30 -30 -30 ricmi -60 **TPC data during**^{83m}Kr calibration Electronic Recoil (EF [PE] cS2b Z 0 [cm] -60 Nuclear Recoil (NR) -90 -120 -150 -30^{+} ⁶⁰ 30 0 -30_60 10 20 40 60 80 100 Y[cm] cS1 [PE]

XENON1T calibration data

Energy Reconstruction

Use multiple mono-energetic signals to reconstruct recoil energy

- Four low-energy calibration points: ³⁷Ar, ^{83m}Kr, ^{129m}Xe and ^{131m}Xe
- Observed 1-2% bias in reconstructed energy used as systematic uncertainty in modeling

Defining Search Region

Searching for NR DM models

- Define blinded region in cS1/cS2 space
- Background models constructed in cS1, cS2, r and Z space
- Perform unbinned profile likelihood in analysis space

Making results accesible

In order to test XENON data against an NR model require

- Knowledge of detector response
- Selection efficiencies
- Background models
- Science data

Modelling response

- - Detector observable are photons and electrons
 - Number of quanta produced dependent on original recoil
 - Number of photons and electrons anticorrelated
- Thus for a given cS1 energy, cS2 response is dependent on NR energy

XENON1T science data

Transforming analysis space

Reconstructed energy space is unique

 $E_{\text{recER}}(\text{cS1},\text{cS2}_{\text{b}}) \equiv W \cdot [\text{cS1}/g_1 + \text{cS2}_{\text{b}}/g_2],$

Require other analysis space to be independent of E_{rec}

 $E_{\rm rec}^{\perp}(\mathrm{cS1},\mathrm{cS2}_{\mathrm{b}}) \equiv W \cdot [\mathrm{cS1}/g_2 - \mathrm{cS2}_{\mathrm{b}}/g_1],$

Provide migration matrix

- Measured XENON detector response accounted for
- Converts input spectrum in true energy to reconstructed energy

Science likelihood per bin can be expressed as:

$$\mathscr{L}_{\mathbf{r},\mathrm{SR}}^{\mathrm{sci}\prime}(s,\boldsymbol{\theta}) = Poisson(N_r \mid \boldsymbol{\mu}_r^{\mathrm{tot}}(s,\boldsymbol{\theta})) \\ \times \prod_{i \in S_r} f^{\mathrm{tot}\prime}(E_{\mathrm{rec},i}, E_{\mathrm{rec},i}^{\perp}, R_i \mid s, \boldsymbol{\theta})$$

An Approximate Likelihood

Approximate likelihoods

- Calculated on XENON1T science data
- 1000 no-signal MC simulations of XENONnT
- Available at https://zenodo.org/record/7255651

	n = 60 Bins	n = 80 Bins	n = 120 Bins
Flat Spectrum	$1.01\substack{+0.08\\-0.06}$	$1.01\substack{+0.07 \\ -0.05}$	$1.01\substack{+0.07 \\ -0.04}$
NR Lines			
3 keV	$1.06^{+0.33}_{-0.16}$	$1.04^{+0.29}_{-0.15}$	$1.03\substack{+0.23\\-0.15}$
5 keV	$1.13^{+0.24}_{-0.14}$	$1.11\substack{+0.19 \\ -0.13}$	$1.11\substack{+0.17 \\ -0.12}$
7 keV	$1.14\substack{+0.19\\-0.14}$	$1.13\substack{+0.16 \\ -0.12}$	$1.13\substack{+0.15\\-0.12}$
10 keV	$1.11\substack{+0.15\\-0.12}$	$1.11\substack{+0.14 \\ -0.11}$	$1.11\substack{+0.12 \\ -0.10}$
20 keV	$1.05\substack{+0.14\\-0.09}$	$1.04\substack{+0.12\\-0.08}$	$1.05\substack{+0.12\\-0.08}$
30 keV	$1.04\substack{+0.11\\-0.09}$	$1.03\substack{+0.10 \\ -0.08}$	$1.04\substack{+0.10\\-0.08}$
SI WIMP signals			
$6 \mathrm{GeV}/c^2$	$1.07^{+0.40}_{-0.21}$	$1.02\substack{+0.31\\-0.19}$	$1.01\substack{+0.25 \\ -0.17}$
$10 \text{ GeV}/c^2$	$1.08\substack{+0.24\\-0.14}$	$1.06\substack{+0.19\\-0.14}$	$1.05\substack{+0.17\\-0.13}$
$50 \text{ GeV}/c^2$	$1.07\substack{+0.10\\-0.08}$	$1.06\substack{+0.09\\-0.07}$	$1.07\substack{+0.07 \\ -0.07}$
$100 \text{ GeV}/c^2$	$1.06\substack{+0.10\\-0.08}$	$1.06\substack{+0.09\\-0.06}$	$1.06\substack{+0.07 \\ -0.06}$

 Table 1
 Table of bias and spread, defined as the median and 1-sigma spread of the ratio between binwise and full likelihood upper limits using 1000 toy-MC simulations.

Extending the Search for Dark Matter in XENON1T

Alternate models can be investigated using ERs

- Darkphotons
- Solar Axions,
- Axion like particles.
- Neutrino magnetic moment

XENON1T observed an excess in ER events

- 285 events (232 +/- 15 expected), 3.3 sigma
- Excess consistent with several beyond SM models
- However couldn't exclude potential tritium background

175

200

PRD 102, 072004 (2020)

Low energy ER search in XENONnT

Detection efficiency validated with simulations

Dominated by 3-fold PMT coincidence requirement on S1

signals

Data selection cuts applied to events

Fiducial volume cut results in 4.37 tonne search region

Science Data

1-140 keV

1.16 t.y exposure

Both NR and ER data blinded below 20 keV

Background Estimates

dominate background

Electronic Recoil Unblinding

XENON

best-fit number of events for each component in $(1, 140)$ keV.				
Component	Constraint	Fit		
214 Pb	(584, 1273)	980 ± 120		
$^{85}\mathrm{Kr}$	$90~\pm~59$	$91~\pm~58$		
Materials	$266~\pm~51$	$267~\pm~51$		
136 Xe	$1537~\pm~56$	$1523~\pm~54$		
Solar neutrino	$297~\pm~30$	$298~\pm~29$		
124 Xe	-	$256~\pm~28$		
AC	$0.70~\pm~0.04$	$0.71~\pm~0.03$		
133 Xe	-	$163~\pm~63$		
^{83m} Kr	-	80 ± 16		

TABLE I. The background model B_0 with fit constraint and

No excess observed

A small tritium contamination is most likely origin of XENON1T excess

First results from XENONnT

XENONnT low energy ER rate in context

Factor five background reduction with respect to XENON1T

No excess below 5 keV found: 8.6σ exclusion on XENON1T excess