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● Multi-component

● Interactions

● Mass splitting

● Stability

● Self Interaction

● Abundances

arXiv:1112.4491

assisted freeze 
out mechanism

model parameters:

Boosted Dark Matter Model (BDM)

arkiv: 1611.09866
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Summary of Boosted Dark Matter Studies
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Large Volume 
Neutrino 

Experiments

Super-Kamiokande 
(SK)

BDM signal sources:

Deep Underground Neutrino Experiment (DUNE)

    requires sufficiently high 
electron recoil energies. electrons: free-at-rest
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Experimental Study After proving the principle, 
how can we generalize? 

● High recoil vs low recoil: necessity to 
exploit the full parameter space.

● Revisiting the free-at-rest electron 
assumption.

● Exploring different models of BDM.

● Generalization to boost mechanism 
independent framework.

We can discuss all the above at once  by 
considering BDM or fast moving dark matter at low 
energy electron recoil such as DD experiments.
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● Electrons are bound to the target 
atoms, treating them as free is 
effectively valid only at high   .

● At low   , atomic effects become very 
important.

● We shall re-derive the scattering cross 
section to accommodate such effects.

● Star wit free scattering, replace:      
                  with         .

ionization form factor

transition factor

binding 
energynon-rel. 

rel.

Atomic Physics Effects



  

Example 
rel. wave 
functions numerical solution: RADIAL, dtfatom
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ionization form factor
relativistic vs non-relativistic

Example 
potential
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Does the ionization form factor restore the asymptotic freedom of electrons at high recoil energies?

This behavior of the ionization 
form factor at high electron 
recoils justifies an earlier 
assumption “free-at-rest” 
electrons when considering 
experiments with energy 

threshold above ~10 MeV. 

dotted lines

Fast Moving Dark Matter at Direct Detection Experiments

DD Exps. LVnu Exps.
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● Taking the XENON1T experiment 
as an example.

● Uses the reported number of 
events between 1.5 keV and 30 
keV electron recoil as a 
background.

● The analysis could be 
improved by studying the 
number of Photo-electrons 
instead of the recoil energy.

arXiv:2006.09721 
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Questions

Thank you
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Backup Slides
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arxiv: 1604.04559

https://arxiv.org/pdf/1604.04559.pdf
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Example 
rel. wave 
functions numerical solution: RADIAL, dtfatom

Example 
potential

● Identify the potential for a given Z value.
● Solve Dirac equation for a bound state 

electron    .
● Solve Dirac equation for an electron in the 

continuum state      .
● Compute wave function overlap between above 

two states:

● Use the above to estimate the ionization 
form factor and then the differential cross 
section.
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Example 
rel. wave 
functions numerical solution: RADIAL, dtfatom

Example 
potential
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1. Limits on the dark photon.
2. Direct detection of non-relativistic ψ0.
3. Direct detection of non-relativistic ψ1.
4. Indirect detection of non-relativistic ψ1.
5. CMB constraints on ψ1 annihilation.
6. BBN constraints on ψ1 annihilation.
7. Dark matter searches at colliders.

ArXiv:1405.7370
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