Haider Alhazmi

In colaboration with KC Kong, Gopalang Mohalabeng, Seodong shin, Doojin Kim, Nov. 14th 2022

arXiv:2006.16252 arXiv:22xx.xxxx

Boosted Dark Matter Model (BDM)

the dark sector

Summary of Boosted Dark Matter Studies

Ref.	Boo	ost M	lechanism		Source	е	Intera	action	Phenomenology at				
(ArXiv)	А	D	semi-A	GC	Sun	dSps	e^-	N	SK/HK	DUNE	IceCube	Sur.	DD
1405.7370 [1]	\checkmark			\checkmark			Е		~		\checkmark		
1407.3280 2		\checkmark		\checkmark				Е			\checkmark		
1410.2246 3	\checkmark		\checkmark		\checkmark			Ε	\checkmark				
1411.6632 4	\checkmark				\checkmark		Е		\checkmark		\checkmark		
1501.03166 5	\checkmark			\checkmark				Ε					\checkmark
1610.03486 6	\checkmark			\checkmark		\checkmark	Е		\checkmark	\checkmark			
1611.09866 7	\checkmark			\checkmark	\checkmark		Е		\checkmark	\checkmark			
1612.06867 8							IE		\checkmark	\checkmark			
1712.07126 9	\checkmark			\checkmark			IE						\checkmark
1803.03264 10	\checkmark			\checkmark			IE					\checkmark	
1804.07302 11	\checkmark	\checkmark		\checkmark	\checkmark		Е					\checkmark	
1806.09154 12	\checkmark			\checkmark			IE		\checkmark				
1903.05087 13	\checkmark			\checkmark			IE			\checkmark			
Abbreviations	Abbreviations												
A: annihilation [14,15], D: decay [16,17], semi-A: semi-annihilation [18-22].													
dSphs: dwarf spl	dSphs: dwarf spheroidal galaxies, e-: electron, N: nucleon.												
E: elastic, IE: ine	elasti	ic, SK	: Super-Ka	amioka	nde, H	IK: Hyp	per-Ka	miokan	de, DUNE	: Deep Ur	derground	Neutrino	Experiments.
Sur.: surface neu	Sur.: surface neutrino detectors. DD: direct detection experiments.												

Large Volume Neutrino Experiments

	Volume (kTon)	$E_{\rm th} \ ({\rm MeV})$	$ heta_{ m res}$	Running Time (years)
SK [109]	22.5	100	3°	~ 18
HK [110]	560	100	3°	
DUNE [111]	40 - 50	30	1°	

7.7		DUNE20	DUNE40	SK	HK
N _{bkg}	GC	2 with 10°	4 with 10°	7.01 with 10°	174 with 10°
year	Sun	0.02 with 1°	0.04 with 1°	0.632 with 3°	15.7 with 3°

BDM signal sources:

 $: \qquad N_{\rm sig} = \Delta T \times N_{\rm target} \times \Phi \times \sigma_{1e}$

 $E_{
m th}$ requires sufficiently high electron recoil energies.

 $m_0/m_1\gtrsim \mathcal{O}(10)$ electrons: free-at-rest

Deep Underground Neutrino Experiment (DUNE)

Experimental Study

After proving the principle, how can we generalize?

- High recoil vs low recoil: necessity to exploit the full parameter space.
- Revisiting the free-at-rest electron assumption.
- Exploring different models of BDM.
- Generalization to boost mechanism independent framework.

We can discuss all the above at once by considering BDM or fast moving dark matter at low energy electron recoil such as DD experiments.

spin classification

Mediators: V, A, P and S.

DM particles: F and S.

7 different combinations

Recoil energy: E_r

Atomic Physics Effec $DM(p) + e^{-}(k) \rightarrow DM(p') + e^{-}$

- Electrons are bound to the t atoms, treating them as free effectively valid only at hi
- At low E_r , atomic effects be important.
- We shall re-derive the scatt section to accommodate such

omic Physics Effects	differe	nt considerations :	for the trans	the transition factor, $ f_{e_i \to e_f} $.				
$(p) + e^{-}(k) \to DM(p') + e^{-}(k')$	method	regiem	$ e_i\rangle$ wave initial e^-	functions $\langle e_f $	mediator			
rons are bound to the target	method	regieni	$(n\ell)$	$(E_r\ell')$	mediator			
tively valid only at high E_r .	1 (PW) 2 (SCE)	non-relativistic	RHF RHF	PW Schrodinger	S,V S.V			
w E_r , atomic effects become very tant.	3 (DCE)		Dirac	(DHFS)	S,V P, A			
all re-derive the scattering cross on to accommodate such effects.	4 (DCE) 5 (DCE)	relativistic	Dira Dira	$\operatorname{ac} (\operatorname{erf})$	S,V P, A S,V P, A			
wit free scattering, replace: $+ {f k} - {f p}' - {f k}')$ with $\left f_{e_i o e_f} ight ^2$.				$ trans _{e_i \to e_f}(\mathbf{q}) = \langle e_i \rangle$	$\frac{ \mathbf{tion} \mathbf{f} \mathbf{actor} }{ e^{i\mathbf{q}\cdot\mathbf{r}} e_i\rangle }$			
$n\ell$) bind ener	ling rgy	$ f_{ion}(E_r, $	$\left \frac{\mathbf{\mathbf{p}}_{\mathbf{\mathbf{f}}} - \mathbf{\mathbf{f}}_{\mathbf{\mathbf{f}}}}{\mathbf{\mathbf{q}}} \right ^{2} = \frac{2 \left \mathbf{k}_{\mathbf{f}} \right }{(2\pi)}$	$\frac{ ^3}{)^3} \int d\Omega_{\hat{\mathbf{k}}'} f_{e_i} $	$_{ ightarrow e_f}(\mathbf{q}) ^2.$			
$\frac{d\sigma_{1e}^{n\ell}}{dE_r} = \frac{1}{64\pi v_{1e}} \frac{1}{E_1 E_r (2m_e + E_r)(m_e)}$	$\frac{1}{e^{-(E_{n\ell}^B)}}\sqrt{2}$	$\overline{E_1^2 - m_1^2} \int_{ \mathbf{q} ^{\min}}^{ \mathbf{q} ^{\max}} d\mathbf{q}$	$d \mathbf{q} \; \mathbf{q} \mathcal{M} $	$ f_{ion}(E_r, \mathbf{q}) ^2$				
$ f_{e_i \to e_f} ^2 \to \delta^3(\mathbf{p} + \mathbf{k} - \mathbf{p}' - \mathbf{k}')$ and	$ E_{n\ell}^{\rm B} = 0$	i ,>	$\frac{d\sigma_{1e}}{dE_r} = \frac{1}{8\pi}$	$\frac{m_e \mathcal{M} ^2}{\lambda \left(s, m_e^2, m_1^2\right)}$	7			

Example rel. wave

 $\hat{h} = \boldsymbol{\alpha} \cdot \mathbf{p} + m_e \left(\beta - 1\right) + V_{\text{eff}}(r)$

functions

numerical solution: RADIAL, dtfatom

state			Xe absolute ionization energy in atomic units.						
$n_{\ell j}$	n	κ	-Z/r	[129]	$V_{\rm eff}^{ERF}$ [125, 126]	$V_{\rm eff}^{EXP}$ [127]	$V_{\rm eff}^{DHFS}$ [128]		
$1_{s_{1/2}}$	1	-1	1519	1277	1261	1263	1270		
$2_{s_{1/2}}$	2	-1	383.8	202.5	196.4	196.2	199.1		
$2_{p_{1/2}}$	2	1	383.8	189.7	184.5	184.2	187.6		
$2_{p_{3/2}}$	2	-2	368.1	177.7	172.6	172.3	175.5		
$3_{s_{1/2}}$	3	-1	168.8	43.01	40.39	40.36	41.24		

Example potential

$$\mathbf{V}_{\mathrm{eff}}^{\mathrm{DHFS}}(r) = V_{\mathrm{nuc}}(r) + V_{\mathrm{el}}(r) + V_{\mathrm{ex}}(r)$$

ionization form factor relativistic vs non-relativistic

Does the ionization form factor restore the asymptotic freedom of electrons at high recoil energies?

as E_r increases: $|f_{ion}(E_r, |\mathbf{q}|)|^2 \to \delta(|\mathbf{q}| - |\mathbf{k}'|)$

This behavior of the ionization form factor at high electron recoils justifies an earlier assumption "free-at-rest" electrons when considering experiments with energy threshold above ~10 MeV.

Fast Moving Dark Matter at Direct Detection Experiments

 10^{-30} ipreliminary 10-32 -3 OUTETHOST SHELLS 211 876118 10^{-34} -²ε₂ 10⁻³⁶. d e 10^{-38} XENON1T BDM: $m_V = 15 \text{ MeV}$, v = 0.9c 10^{-40} ion=PW ion=SCE ion=DCE 10-42 10-2 10^{-1} 10⁰ 10² 10^{-3} 101 10³ *m*₁ [MeV]

90% exclusion

• Taking the XENON1T experiment as an example.

 Uses the reported number of events between 1.5 keV and 30 keV electron recoil as a background. <u>arXiv:2006.09721</u>

The analysis could be improved by studying the number of Photo-electrons instead of the recoil energy.

90% exclusion at two example experiments

Questions

Backup Slides

Fast Moving Dark Matter at Direct Detection Experiments transition factor: $|f_{e_i \to e_f}| \propto \int_0^\infty R_{n\ell} R_{E_r \ell'} j_L(qr) r^2 dr.$

Schrodinger:

In non rel. approx., Dirac large component is dominant since the small component is linearly proportional to $Z\alpha$.

(2016)

$$\kappa = \mp (j + \frac{1}{2}) \text{ for } j = \ell \pm \frac{1}{2}$$

 $\gamma = \sqrt{\kappa^2 - Z^2 \alpha^2}$

Example rel. wave

functions

numerical solution: RADIAL, dtfatom

 $\hat{h} = \boldsymbol{\alpha} \cdot \mathbf{p} + m_e \left(\beta - 1\right) + V_{\text{eff}}(r)$

st	ate			Xe abso	lute ionization en	ergy in atomi	c units.
$n_{\ell j}$	n	κ	-Z/r	[129]	$V_{\rm eff}^{ERF}$ [125, 126]	$V_{\rm eff}^{EXP}$ [127]	$V_{\rm eff}^{DHFS}$ [128]
$1_{s_{1/2}}$	1	-1	1519	1277	1261	1263	1270
$2_{s_{1/2}}$	2	-1	383.8	202.5	196.4	196.2	199.1
$2_{p_{1/2}}$	2	1	383.8	189.7	184.5	184.2	187.6
$2_{p_{3/2}}$	2	-2	368.1	177.7	172.6	172.3	175.5
$3_{s_{1/2}}$	3	-1	168.8	43.01	40.39	40.36	41.24
$3_{p_{1/2}}$	3	1	168.8	37.66	35.44	35.43	36.37
$3_{p_{3/2}}$	3	-2	164.1	35.33	33.17	33.15	34.05
$3_{d_{3/2}}$	3	2	164.1	26.02	24.48	24.50	25.39
$3_{d_{5/2}}$	3	-3	162.7	25.54	24.00	24.03	24.89
$4_{s_{1/2}}$	4	-1	94.21	8.430	7.401	7.445	7.662
$4_{p_{1/2}}$	4	1	94.21	6.453	5.649	5.701	5.909
$4_{p_{3/2}}$	4	-2	92.25	5.983	5.203	5.251	5.438
$4_{d_{3/2}}$	4	2	92.25	2.711	2.368	2.425	2.566
$4_{d_{5/2}}$	4	-3	91.65	2.634	2.296	2.353	2.488
$5_{s_{1/2}}$	5	-1	59.97	1.010	0.851	0.869	0.869
$5_{p_{1/2}}$	5	1	59.97	0.493	0.465	0.479	0.454
$5_{p_{3/2}}$	5	-2	58.97	0.440	0.422	0.434	0.403

Example potential

 $\mathbf{V}_{\mathrm{eff}}^{\mathrm{DHFS}}(r) = V_{\mathrm{nuc}}(r) + V_{\mathrm{el}}(r) + V_{\mathrm{ex}}(r)$

- Identify the potential for a given Z value.
- Solve Dirac equation for a bound state electron $\psi_{n\kappa}$.
- Solve Dirac equation for an electron in the continuum state $\psi_{E_r\kappa'}$.
- Compute wave function overlap between above two states:

$$f_{e_i \to e_f}^{\text{DCE}}(\mathbf{q}) = \int d^3 \mathbf{r} \, \psi_{E_r \kappa'}^{\dagger}(\mathbf{r}) \, e^{i \mathbf{q} \cdot \mathbf{r}} \, \psi_{n\kappa}(\mathbf{r}).$$

• Use the above to estimate the ionization form factor and then the differential cross section.

Example rel. wave

functions

numerical solution: RADIAL, dtfatom

 $\hat{h} = \boldsymbol{\alpha} \cdot \mathbf{p} + m_e \left(\beta - 1\right) + V_{\text{eff}}(r)$

state			Xe absolute ionization energy in atomic units.						
$n_{\ell j}$	n	κ	-Z/r	[129]	$V_{\rm eff}^{ERF}$ [125, 126]	$V_{\rm eff}^{EXP}$ [127]	$V_{\rm eff}^{DHFS}$ [128]		
$1_{s_{1/2}}$	1	-1	1519	1277	1261	1263	1270		
$2s_{1/2}$	2	-1	383.8	202.5	196.4	196.2	199.1		
$2_{p_{1/2}}$	2	1	383.8	189.7	184.5	184.2	187.6		
$2_{p_{3/2}}$	2	-2	368.1	177.7	172.6	172.3	175.5		
$3_{s_{1/2}}$	3	-1	168.8	43.01	40.39	40.36	41.24		

Example potential

 $\mathbf{V}_{\mathrm{eff}}^{\mathrm{DHFS}}(r) = V_{\mathrm{nuc}}(r) + V_{\mathrm{el}}(r) + V_{\mathrm{ex}}(r)$

- Identify the potential for a given Z value.
- Solve Dirac equation for a bound state electron $\psi_{n\kappa}$.
- Solve Dirac equation for an electron in the continuum state $\psi_{E_r\kappa'}$.
- Compute wave function overlap between above two states:

$$---f_{e_i \to e_f}^{\text{DCE}}(\mathbf{q}) = \int d^3 \mathbf{r} \, \psi_{E_r \kappa'}^{\dagger}(\mathbf{r}) \, e^{i \mathbf{q} \cdot \mathbf{r}} \, \psi_{n\kappa}(\mathbf{r}).$$

• Use the above to estimate the ionization form factor and then the differential cross section.

Fast Moving Dark Matter at Direct Detection Experiments Signal Significance of BDM from the Galactic Center

BMP: $g_e^V = 3 \times 10^{-5}, g_{\chi_1}^V = 0.5$ and $m_V = 15$ MeV.

Fast Moving Dark Matter at Direct Detection Experiments Signal Significance of BDM from the Sun

BMP: $g_e^V = 3 \times 10^{-5}, g_{\chi_1}^V = 0.5$ and $m_V = 15$ MeV.

ArXiv:1405.7370

- 1. Limits on the dark photon.
- 2. Direct detection of non-relativistic Ψ_0 .
- 3. Direct detection of non-relativistic Ψ_1 .
- 4. Indirect detection of non-relativistic Ψ_1 .
- 5. CMB constraints on Ψ_1 annihilation.
- 6. BBN constraints on Ψ_1 annihilation.
- 7. Dark matter searches at colliders.