IDENTIFYING THE FUNDAMENTAL NATURE OF DARK MATTER IN THE COSMIC LARGE-SCALE STRUCTURE

Keir K. Rogers

Dunlap Fellow, Dunlap Institute for Astronomy & Astrophysics, University of Toronto

Beyond the WIMP: dark matter model space

Canonical ULA DM: Rogers & Peiris (2021, PRL); Light particle DM: Rogers et al. (2022, PRL)

Without Axions

Alexander Spencer London

$$\lambda_{\text{Jeans}} = 9.4 \,(1+z)^{\frac{1}{4}} \,\left(\frac{M_{\text{a}}n^{-}}{0.12}\right)^{-1} \,\left(\frac{m}{10^{-26} \,\text{eV}}\right)^{-2} \,\text{Mpc}$$

Laguë, Bond, Hložek, Rogers, Marsh, Grin (JCAP, 2022)

Sloan Digital Sky Survey maps distribution of galaxies towards edge of observable Universe

Galaxy clustering traces dark matter clustering — revealing signature of ultra-light axions

Laguë, Bond, Hložek, Rogers, Marsh, Grin (JCAP, 2022)

SDSS (BOSS DRI2) galaxy clustering rules out new parts of axion parameter space

Rogers, Hložek, et al. (in prep, 2022)

Strongest axion bounds come from combining cosmic microwave background & large-scale structure

Rogers, Hložek, et al. (in prep, 2022)

Multi-probe approach to detect ultra-light axions

https://keirkwame.github.io/DM_limits