Ultraheavy Dark Matter

based on 2203.06508 — Snowmass white paper,
 work with DEAP-3600 (S. Garg, M. Lai, S. Westerdale) &
 J. Bramante, B. Broerman, J. Kumar, R. Lang, M. Pospelov

Dark Interactions, 14 Nov 2022

Dark reality

Focus

Make & model

Make & model

"Break it"

+ inherently **multi-messenger** since $m_{\rm DM} \gg \Lambda_{\rm EW}$

+ cascading via CMB interaction => low-energy detectors important!

Snowmass2021 Cosmic Frontier White Paper: Ultraheavy particle dark matter

Daniel Carney,^{1,*} Nirmal Raj,^{2,†} Yang Bai,³ Joshua Berger,⁴ Carlos Blanco,^{5,6} Joseph Bramante,^{7,8} Christopher Cappiello,⁷ Maíra Dutra,⁹ Reza Ebadi,^{10,11} Kristi Engel,¹⁰ Edward Kolb,¹² J. Patrick Harding,¹³ Jason Kumar,¹⁴ Gordan Krnjaic,^{15,16} Rafael F. Lang,¹⁷ Rebecca K. Leane,^{18,19} Benjamin V. Lehmann,^{20,21} Shengchao Li,¹⁷ Andrew J. Long,²² Gopolang Mohlabeng,^{7,8} Ibles Olcina,^{1,23} Elisa Pueschel,²⁴ Nicholas L. Rodd,²⁵ Carsten Rott,^{26,27} Dipan Sengupta,^{28,29} Bibhushan Shakya,³⁰ Ronald L. Walsworth,^{10,11} and Shawn Westerdale³¹

"Shake it"

Ultra-ultraheavy

Is dark matter here?!

(cm²)

TODAY

 (Q1) Can our dark matter detectors hunt the rarest huntable? N. Raj, B. Broerman, J. Bramante, R. Lang Phys. Rev. D. (2018)
 N. Raj + DEAP-3600 experiment Phys. Rev. Lett. (2022)
 (Q2) Are there bigger detectors that can join the hunt? N. Raj, B. Broerman, J. Bramante,

N. Raj, B. Broerman, J. Bramante, J. Kumar, R. Lang, M. Pospelov *Phys.Rev.D.* (2018) N. Raj, J. Bramante, J. Kumar *Phys.Rev.D.* (2019)

Today's dark matter detectors

← 50 cm →

DEAP-3600

Multiscatter signatures essential

scatters per transit = σ x target number density x path length

Multiscatter signatures essential

scatters per transit = σ x target number density x path length

Not sought any more. Would double the reach of all current experiments!

a large range of masses for strongly interacting dark-matter particles is probably already ruled out by the simple observation that NaI does not "glow in the dark."

Reverse Rutherford

Experiment 2

liquid Xe

analyses ongoing

PICO-40L

bubble chamber

result to appear in Broerman's PhD thesis

(Q1) Going to the Planck mass

DEAP-3600 @ SNOLAB

← 130 cm →

largest dark matter detector in operation
=>

greatest flux of dark matter admitted =>

back-of-the-envelope (2019):

(Q1) Going to the Planck mass

multiscatter signatures:waveforms of energydeposition in liquid argon

(Q1) Going to the Planck mass

(Q2) Are there **bigger detectors** that can join the hunt?

N. Raj, B. Broerman, J. Bramante, J. Kumar, R. Lang, M. Pospelov Phys.Rev.D. (2018)

DEAP-3600 XENON1T PICO-40L

Liquid scintillator neutrino detectors

XENON1T, DEAP, PICO, ...

BOREXINO, SNO+, JUNO

Direct detection @ liq. scint. neutrino detectors

Mass sensitivity: dark matter fluxes at least 100 times greater Cross section sensitivity: Satisfy selection trigger

DM transit = $10 \ \mu s$

Continuous deposition of photoelectrons over transit time

Collinearity

$$\Delta \theta \lesssim \frac{m_{\rm T}}{m_{\chi}} \simeq 10^{-16} \left(\frac{10^{17} \text{ GeV}}{m_{\chi}} \right) \left(\frac{m_{\rm T}}{11 \text{ GeV}} \right)$$

may be exploited with vertex reconstruction/ timing information

Signal vs background windows

BOREXINO, 10 µs windows

dark matter signal, $\sigma_{nx} = 10^{-28} \text{ cm}^2$ (spin-independent)

. . .

-		 			-	S 1 1	-	-			-		-	-	
-00	•		 				-			 	•				

SNO+ cross section reach

Reconstructing dark matter velocity vector

27

Detector resolutions

Detector resolutions

detector uncertainties tiny => smearing negligible => main limitation is statistics! (triumph of experimental progress)

Summary

need multiscatter + repurposed neutrino detectors

Windchime

for Planck-mass dark matter

FIG. 1. Schematic illustration of the Windchime detector concept. Left: an array of mechanical sensors, here depicted as suspended pendula, with a potential DM track signal. Center: cross-section, emphasizing the "track" signal. Right: single-sensor depiction of a gravitational DM event. Here, for conceptual illustration, the sensor is depicted in a small optical cavity with laser readout. In practice, readout through either fibers or microwave transmission lines will be more convenient for a densely packed array.

Future annihilations

Experiment	Final state	Threshold/sensitivity	Field of view	Location
	С	urrent experiments		
Fermi	Photons	$10 \text{ MeV} - 10^3 \text{ GeV}$	Wide	Space
HESS	Photons	30 GeV - 100 TeV	Targeted	Namibia
VERITAS	Photons	85 GeV - > 30 TeV	Targeted	USA
MAGIC	Photons	$30~{\rm GeV}$ - $100~{\rm TeV}$	Targeted	Spain
HAWC	Photons	300 GeV - >100 TeV	Wide	Mexico
LHAASO (partial)	Photons	$10~{\rm TeV}$ - $10~{\rm PeV}$	Wide	China
KASCADE	Photons	100 TeV - 10 PeV	Wide	Germany
KASCADE-Grande	Photons	10 - 100 PeV	Wide	Italy
Pierre Auger Observatory	Photons	1 - 10 EeV	Wide	Argentina
Telescope Array	Photons	1 - 100 EeV	Wide	USA
IceCube	Neutrinos	$100~{\rm TeV}$ - $100~{\rm EeV}$	Wide	Antarctica
ANITA	Neutrinos	EeV - ZeV	Wide	Antarctica
Pierre Auger Observatory	Neutrinos	0.1 - 100 EeV	Wide	Argentina
	F	Future experiments		
CTA	Photons	$20~{\rm GeV}$ - $300~{\rm TeV}$	Targeted	Chile & Spain
SWGO	Photons	100 GeV - 1 PeV	Wide	South America
IceCube-Gen2	Neutrinos	10 TeV - 100 EeV	Wide	Antarctica
LHAASO (full)	Photons	100 GeV - 10 PeV	Wide	China
KM3NeT	Neutrinos	100 GeV - 10 PeV	Wide	Mediterranean Sea
POEMMA	Neutrinos	20 PeV - 100 EeV	Wide	Space
	*	•		•

TABLE I. A non-exhaustive list of current and future indirect detection experiments sensitive to ultraheavy dark matter. See Refs. [132, 141–148].

Characterizing WIMPs

Encounter rate (spin-independent) =
6.8 events ×

$$\left(\frac{\sigma_{\chi N}}{10^{-39} \text{ cm}^2}\right) \left(\frac{A}{27}\right)^4 \left(\frac{1000 \text{ GeV}}{m_{\text{DM}}}\right) \left(\frac{27}{A}\right) \left(\frac{\rho_{\text{DM}}}{0.3 \text{ GeV/cm}^3}\right) \left(\frac{v_{\text{DM}}}{220 \text{ km/s}}\right) / \text{kg/day}$$

Redundancy in {cross-section, mass, local density}

Characterizing MIMPs

Characterizing MIMPs

N(scatters) \propto DM kinetic energy / recoil energy $n_{\rm shield} L_{\rm shield} \sigma \propto m_{\chi} v_{\chi}^2$ / recoil energy

More accurately:

$$\frac{E_f}{E_i} = \prod_i (1 - z\beta_i)^{\tau_{\text{od},i}}$$
$$z\beta_i = z \, 4m_i m_\chi / (m_\chi + m_i)^2$$

Characterizing MIMPs

coincident electron recoils)

Searches ongoing...

(Q2) Large volume neutrino detectors?

Organic liquid scintillator (SNO+, Borexino, etc.): well-suited for dark matter search! collect enough light in PMTs => in business

Water Cerenkov (Super-K, SNO, etc.) unsuitable: non-relativistic scattering

Liquid argon TPCs (DUNE, etc.): threshold too high

SNO+ mass reach

"fiducial area" = 10^6 cm^2

scale model @ SNOLAB

PMT selfie 2 km underground

Statistics

SNO+ could potentially collect these many events

Recoil Energy (keV)

DM transit = $10 \ \mu s$

 Existing @ BOREXINO

 50 PE
 /100 ns, or

 5000 PE/ 10 μs.

Proposed improvement

42 PE/ 10 µs.

Dark count rate reported by Borexino (1308.0443): $N_{bg} = 10 \text{ PE}/10 \text{ }\mu\text{s.}$

Get required trigger from <u>trial factors</u> (solve for N_c)

$$\sum_{N_{\rm c}}^{\infty} \frac{(N_{\rm bg})^{N_{\rm c}}}{N_{\rm c}!} e^{-N_{\rm bg}} = \frac{10 \ \mu \rm s}{t_{\rm life}} (10 \ \rm yr)$$

— Enhance cross section sensitivity by ~100.

SNO+ cross section reach

B. Broerman, J. Bramante, J. Kumar, R. Lang, M. Pospelov, N. Raj Phys. Rev. D. (2019)

Pinpointing mean speed

galactic frame $f(v) = \frac{1}{N}v^2 \exp\left(-\frac{v^2}{v_0^2}\right)\Theta(v_{\rm esc} - v)$

 $v_0 = \text{circular speed} = \mathbf{\sqrt{2/3}}$ dispersion speed

Pinpointing mean speed

galactic frame $f(v) = \frac{1}{N}v^2 \exp\left(-\frac{v^2}{v_0^2}\right)\Theta(v_{\rm esc} - v)$

Testing dispersion speed

Testing dispersion speed

Sun's frame

$$vf_{\oplus}(v) \propto v^2 \exp\left(\frac{-(v^2 + v_{\oplus}^2)}{v_0^2}\right) \times \left[\exp\left(\frac{2vv_{\oplus}}{v_0^2}\right) - \exp\left(c_{\min}\frac{2vv_{\oplus}}{v_0^2}\right)\right]\Theta(v_{esc} + v_{\oplus} - v)$$

Perform a Kolmogorov-Smirnov test ("How many events to reject null hypothesis at given significance?")

Pinpointing escape speed?

Testing escape speed

Rejecting backgrounds

Unknown instrumental/ radiogenic/ cosmogenic background modelled as power-law.

(NB: in all probability, search would be background-free.)

Kolmogorov-Smirnov test to determine # events required to reject background

Testing velocity anisotropies

galactic frame

Testing velocity anisotropies

dipole coefficient monopole coefficient 200 $N_{\rm DM} = 10^4$ $N_{\rm DM} = 10^4$ *δψ* = 0.01 150 *δψ* = 0.01 150 good Trials Trials $N_{\rm DM} = 5 \, {\rm x10^2}$ angular 100 *δψ* = 0.01 resolution $N_{\rm DM} = 10^2$ $N_{\rm DM} = 5 \times 10^2$ 50 **δψ** = 0.01 50 *δψ* = 0.01 (smearing $N_{\rm DM} = 10^2$ **δψ =** 0.01 negligible) 0 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 -0.10.0 0.1 0.2 Reconstructed C₀₀ Reconstructed C₁₁ 300 $N_{\rm DM} = 10^4$ $N_{\rm DM} = 10^4$ 200 δψ = $\delta \psi = 1$ 250 poor 150 200 Trials Trials Trials angular 100 $N_{\rm DM} = 5 \, {\rm x10^2}$ resolution **δψ** = 1 100 $N_{\rm DM} = 10^2$ $N_{\rm DM} = 5 \times 10^2$ 50 (smearing δψ = 50 **δ***w* = 1 $N_{\rm DM} = 10^2$ significant) 0 0.70 0.85 0.90 0.95 0.0 0.75 0.80 1.00 -0.10.2 0.65 0.1 **Reconstructed C₀₀** Reconstructed C₁₁ **LESSONS:** good statistics => accuracy & precision, J. Bramante, J. Kumar, N. Raj

smearing => anisotropies wash out.