OVERVIEW OF NEW PHYSICS SEARCHES AT THE FORWARD PHYSICS FACILITY AT THE LHC

Sebastian Trojanowski

Dark Interactions New Perspectives from Theory and Experiment

November 15, 2022

Whitepapers:

J.L. Feng, F. Kling, M.H. Reno, J. Rojo, D. Soldin etal, 2203.05090 L.A. Anchordoqui etal, 2109.10905

+ many other papers

LHC: HIGH p₇ AND LOW p₇ SEARCHES

Heavy new physics preferentially searched for in the high p_{τ} region, but...

LHC is also a factory of light particles

(e.g. light mesons, mostly dismissed as not interesting)

FORWARD PHYSICS FACILITY

FAR-FORWARD SEARCHES AT THE LHC

Far-forward searches at the LHC in a bird's eye view

PURPOSE-BUILT FACILITY

Underground facility:

- ~620 m far forward from the ATLAS IP,
- shielded by ~200 m concrete and rock.
- FPF experiments to detect neutrino interactions, energies up to a few TeV,
- and search for new physics
- Several experiments proposed so far (signatures: decay, scattering, ionization)

STATUS

- FASER/FASERv and SND@LHC experiments are currently taking data
- Forward Physics Facility (FPF)

In the U.S. the Snowmass process is concluding. From the Energy Frontier Executive Summary:

 "Our highest immediate priority accelerator and project is the HL-LHC, the successful completion of the detector upgrades, operations of the detectors at the HL-LHC, data taking and analysis, including the construction of auxiliary experiments that extend the reach of HL-LHC in kinematic regions uncovered by the detector upgrades."

Also strong endorsements of the FPF physics case from the Neutrino Frontier, the Rare Processes Frontier, and the Cosmic Frontier.

CERN:

- large progress in facility planning (e.g. make sure that FPF installation and operation will not interfere with the LHC)

- extensive simulations (CERN FLUKA team); BG and radiation safety, **muons**
- first informal discussions with the LHCC chair
- Physics Beyond Colliders (PBC) at CERN allocated 75K CHF for site investigation

PHYSICS AT THE FPF

LIGHT LONG-LIVED PARTICLES (DECAYS)

MANY LLP STUDIES

SELECTED SENSITIVITY REACH PLOTS

OTHER SIGNATURES

Direct light DM detection at the LHC

• We focus on LDM particles produced in the far-forward region of the LHC

& their scattering in a distance detector

• This search is highly complementary to the traditional DM direct detection searches:

– probe of relativistic interaction rates of LDM (DM energy ~ a few hundred GeV)

[collider-boosted DM]

- the search is not sensitive to the precise abundance of χ DM component (possible variations in cosmological scenario)

[collider-produced DM]

Relativistic regime for probing DM interactions

Expected sensitivity reach

Nuclear scatterings also possible: elastic and DIS signatures

NEUTRINO BSM

Forward LHC Neutrinos

High-energy neutrinos at the LHC are preferentially produced in the forward direction

Forward Physics Facility

NEUTRINO BSM HIGHLIGHTS

• Neutrino oscillations into sterile neutrinos direct probes at larger mass differences than typical neutrino experiments

 $\Delta m^2 \sim 1000 \text{ eV}^2$

(also e.g. Gallium anomaly)

Non-standard neutrino interactions

Example: dipole portal to heavy neutral leptons

Magill etal,

1803.03262 $\mathcal{L} \supset \mu_N \, \bar{\nu}_L \sigma_{\mu\nu} N_R F^{\mu\nu} + \text{h.c.},$

Transition magnetic moments of neutrinos Before EWSB

$$\mathcal{L} \supset \bar{L} \left(d_{\mathcal{W}} \mathcal{W}^a_{\mu\nu} \tau^a + d_B B_{\mu\nu} \right) \tilde{H} \sigma_{\mu\nu} N_D + h.c.$$

FPF BSM WORKING GROUP

FPF physics working groups (+ different groups for facility and experiments)

WG1 – Neutrino Interactions (Leader: Juan Rojo)

- WG2 Forward Charm Production (Hallsie Reno)
- WG3 Light Hadron Production (Luis Anchordoqui, Dennis Soldin)
- WG4 BSM physics (Brian Batell, Sebastian Trojanowski)

WG4 (BSM) goals:

a) trigger further discussions about possible unique BSM physics opportunities of the FPF,

b) **studies for already proposed benchmarks** (implementation, modeling uncertainties, new prod. and det. modes)

c) **facilitate exchange of (new) ideas** related to FPF BSM physics (slack channel, community, feedback from experimental representatives)

WE INVITE CONTRIBUTIONS / HAPPY TO DISCUSS IDE

SUMMARY OF FAR-FORWARD LHC PHYSICS PROGRAM

(VERY) SCHEMATIC FAR-FORWARD DETECTOR CAPABILITIES

- For BSM and neutrino physics, the program starts at Run 3
 - FASER(v), SND@LHC
- For HL-LHC: proposed dedicated **Forward Physics Facility** (add light DM, mCPs,...)
- Best reach for masses<GeV, but even ~100 GeV new particles can be probed
- Further (B)SM opportunities: non-DIS & rare v scat., neutrino NSI, oscillations, quirks,...
- Tool for BSM simulations: FORESEE F. Kling, ST, 2105.07077

THANK YOU !

5TH FORWARD PHYSICS FACILITY WORKSHOP

Primary focus this time: facility, experiments, next steps

		https://indico.cern.ch/event/119
$ ightarrow$ C $ m \rangle$	https://indico.cern.ch/event/1196506/	
K < ^ 📰	• 🖬 🖬 • 🖈 🔗 🖌	Public - 🔇 US/Central - 💄 M. Reno -
5th	Forward Physics Facility Meeting	hysics acility
15–16 I CERN US/Centra	Nov 2022 al timezone	Enter your search term Q
Overv Regist Partic Video	view tration ipant List conference Starts 15 Nov 2022, 03:00 Ends 16 Nov 2022, 11:00 US/Central	CERN 6/R-012 - conference room Room 93/R-031 also booked for parallel sessions Go to map
Jonath Mary H Dennis	han Feng, Felix Kling, Hall Reno, Juan Rojo, Soldin, Jamie Boyd	project is moving forward! At the 5th Forward Physics Facility Meeting we will

QUIRKS

Postulated particles charged under a hidden strong force If they mass exceeds the hidden scale m >> Λ_{hidden} , they do not hadronize Instead, they are pair produced and remain bounded => they leave very strange tracks

Example signature: DM scattering off electrons

- Signature: recoiled electron (recoil energy E)
- Light mediator favors low energy electron recoil
- Neutrino-induced backgrounds: larger recoils BG. ve -> ve all v flavors 100 Neutrino scattering example DM signal, $\chi e \rightarrow \chi e$, $\alpha_D = 0.5$ $y = E_e/(E_x, E_y)$ m_χ = 25MeV, ε=10⁻⁴ $\frac{d\sigma(\nu_l e \to \nu_l e)}{dy} = \frac{2m_e G_F^2 E_\nu}{\pi} \frac{1}{(1 + 2m_e E_\nu y/M_Z^2)^2} \left(g_L^2 + g_R^2 (1 - y)^2\right),$ — m_γ = 5MeV, ε=3×10⁻⁵ N events 10 DM scattering (dark photon mediator) $\frac{d\sigma}{dy} \approx \frac{8\pi \,\epsilon^2 \,\alpha \,\alpha_D \,m_e \,E_\nu}{m_{A'}^4 \,(1 + 2m_e E_\nu \,y/m_{A'}^2)^2}$ 10⁻² 10² 10³ 0.1 10 10^{4} E_e (GeV) $m_{A'} << M_{J}$

Expected sensitivity reach

B. Batell, J.L. Feng, A. Ismail, F. Kling, R.M. Abraham, ST, 2107.00666

B. Batell, J.L. Feng, M. Fieg, A. Ismail, F. Kling, R.M. Abraham, ST, 2111.10343

Sebastian Trojanowski (AstroCeNT, CAMK PAN & NCBJ)

Neutrinos at the FPF

FORWARD NEUTRINOS

π K

- Pions (for v_{μ}) & kaons (v_{e}) dominate at energies up to few hundred GeV
- Charm dominates at larger energies (also all v_{τ} from charm)

Here – larger uncertainties, further studies ongoing

Measuring neutrino flux & spectrum

window to study forward hadron production in pp collisions at the LHC

• Expected CC event rates (HL-LHC)

~10⁶ ν_{μ} , few x 10⁵ ν_{e} , ~(10³-10⁴) ν_{τ}

NEUTRINO PRODUCTION & DETECTION

NEUTRINOS FROM CHARM DECAYS

NEUTRINO DEEP INELASTIC SCATTERING

