48,000 UC academic workers on strike for fair compensation, support for working parents, international scholar rights, and more. To find out how you can support: <u>fairucnow.org</u>

PROFESSIONAL RESEARCHERS STUDENT RESEARCHERS PROJECT SCIENTISTS SPECIALISTS POSTDOCS READERS TUTORS CPPs TAS **48,000 STRONG**

RECENT ADVANCES

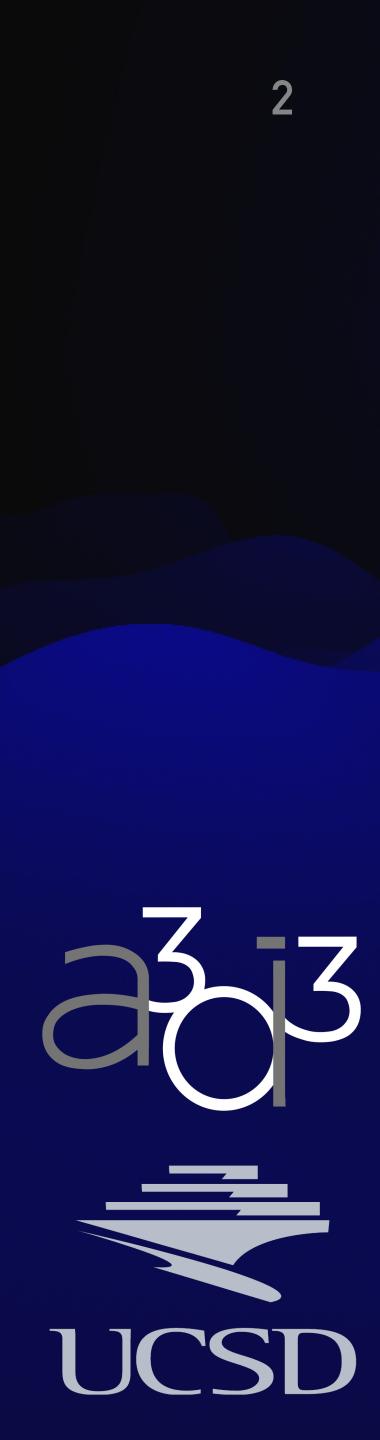
JAVIER DUARTE DARK INTERACTIONS WORKSHOP NOVEMBER 16, 2022

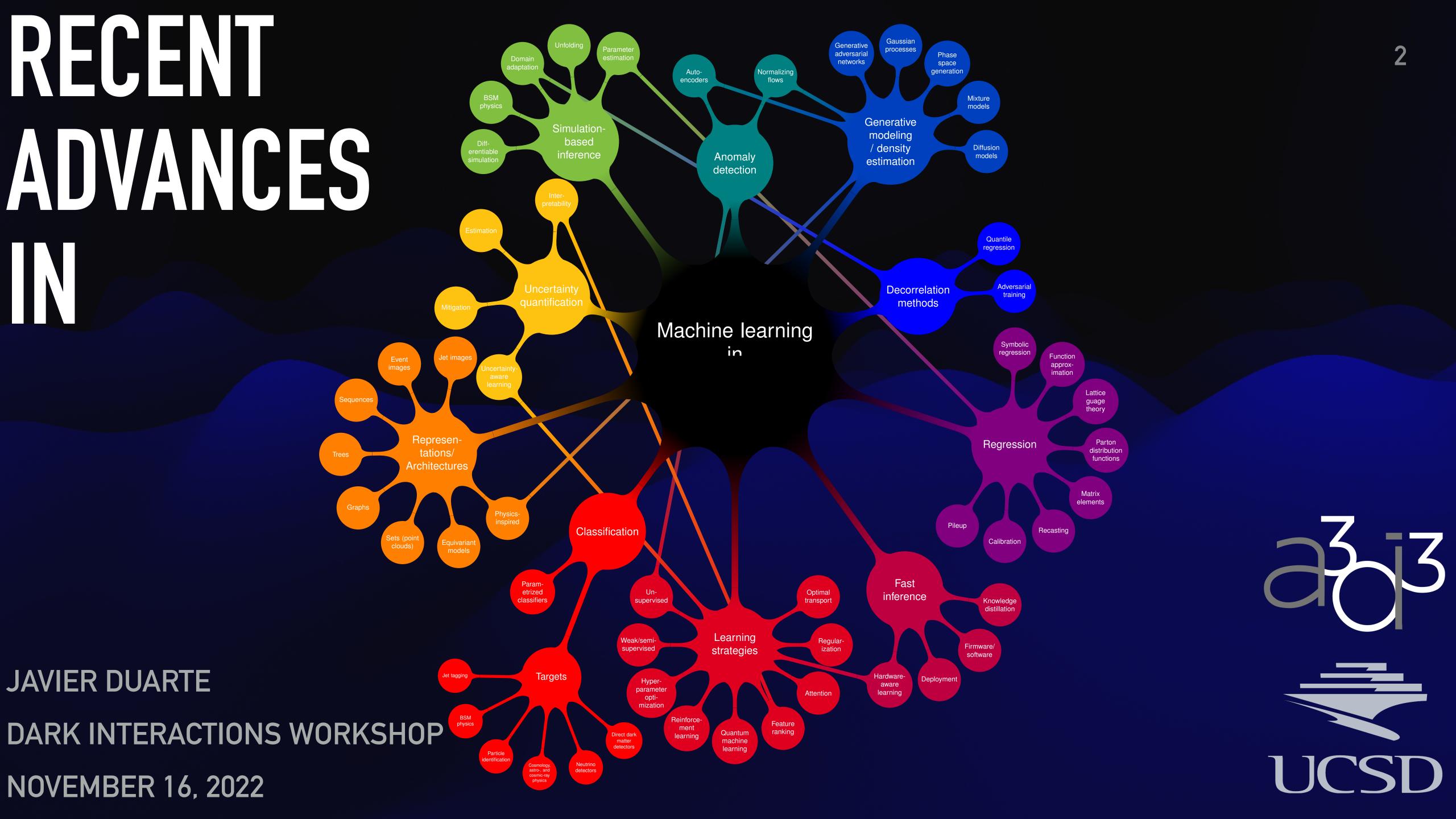
Machine learning in

RECENT ADVANCES IN

Machine learning

JAVIER DUARTE DARK INTERACTIONS WORKSHOP NOVEMBER 16, 2022





DATA REPRESENTATIONS 8 SYMMETRIES IL ANOMALY DETECTION II. GENERATIVE MODELING **IL FAST INFERENCE** VI. SUMMARY & OUTLOOK

REPRESENTATIONS \leftarrow **INDUCTIVE BIAS** \leftarrow **ALGORITHMS**

High-level (expert) variables

Shallow neural network, boosted decision tree, ...

High-level (expert) variables

Ordered list of particles

- Shallow neural network, boosted decision tree, ...
- ID convolutional neural network, recurrent neural network

High-level (expert) variables

Ordered list of particles

Images

- Shallow neural network, boosted decision tree, ...
- ID convolutional neural network, recurrent neural network
- > 2D convolutional neural network

High-level (expert) variables

Ordered list of particles

Images

Set of particles

- Shallow neural network, boosted decision tree, ...
- ID convolutional neural network, recurrent neural network
- > 2D convolutional neural network

Deep set (energy flow network)

High-level (expert) variables

Ordered list of particles

Images

Set of particles

Graph of particles

- Shallow neural network, boosted decision tree, ...
- ID convolutional neural network, recurrent neural network
- > 2D convolutional neural network

Deep set (energy flow network)

Graph neural network

High-level (expert) variables

Ordered list of particles

Images

Set of particles

Graph of particles

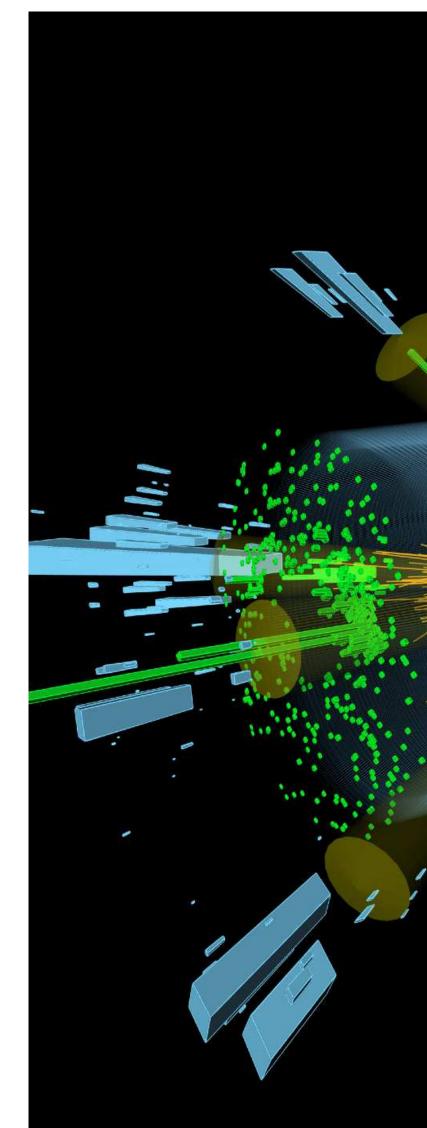
Lorentz scalars/vectors

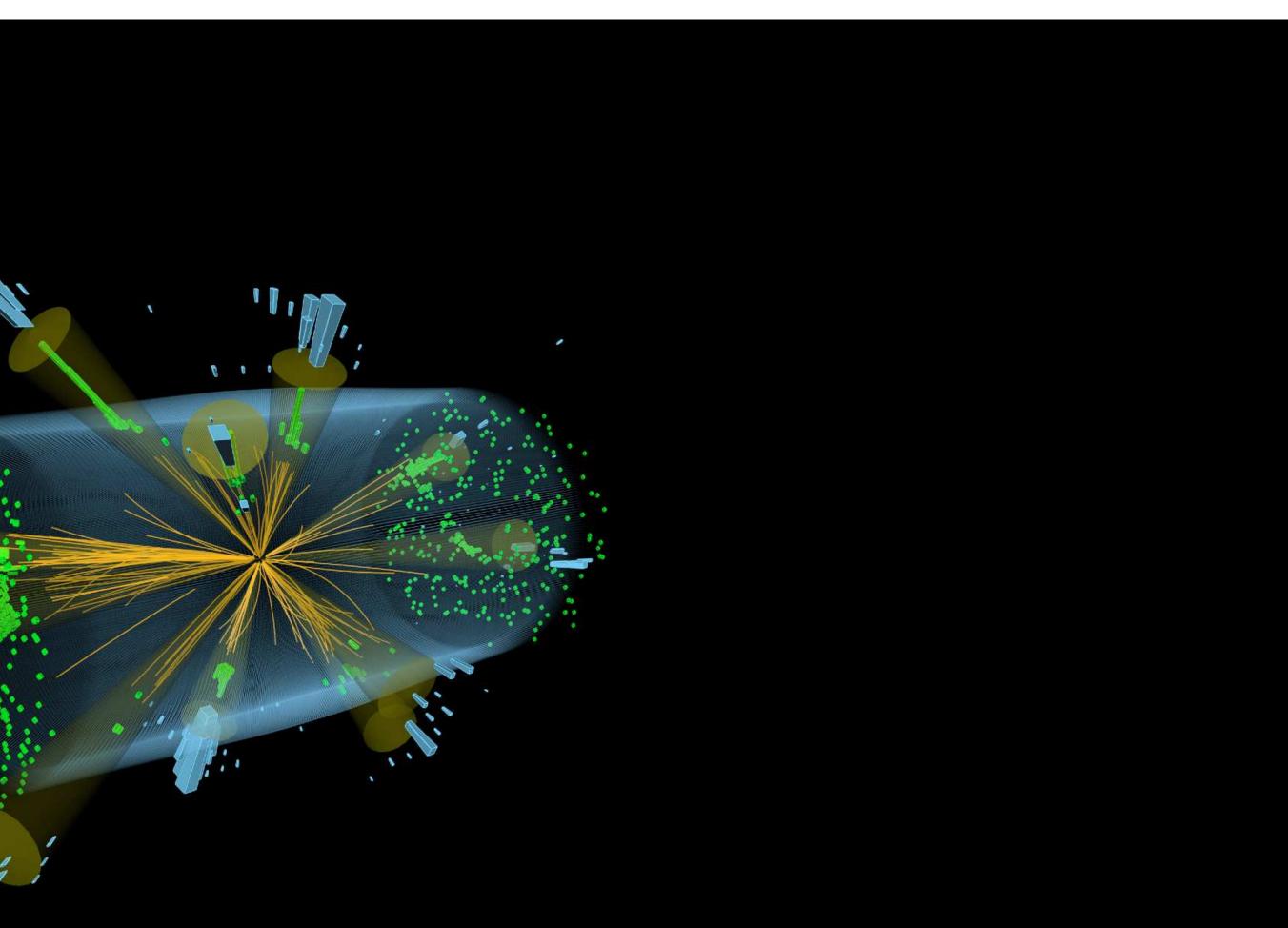
- Shallow neural network, boosted decision tree, ...
- ID convolutional neural network, recurrent neural network
- > 2D convolutional neural network

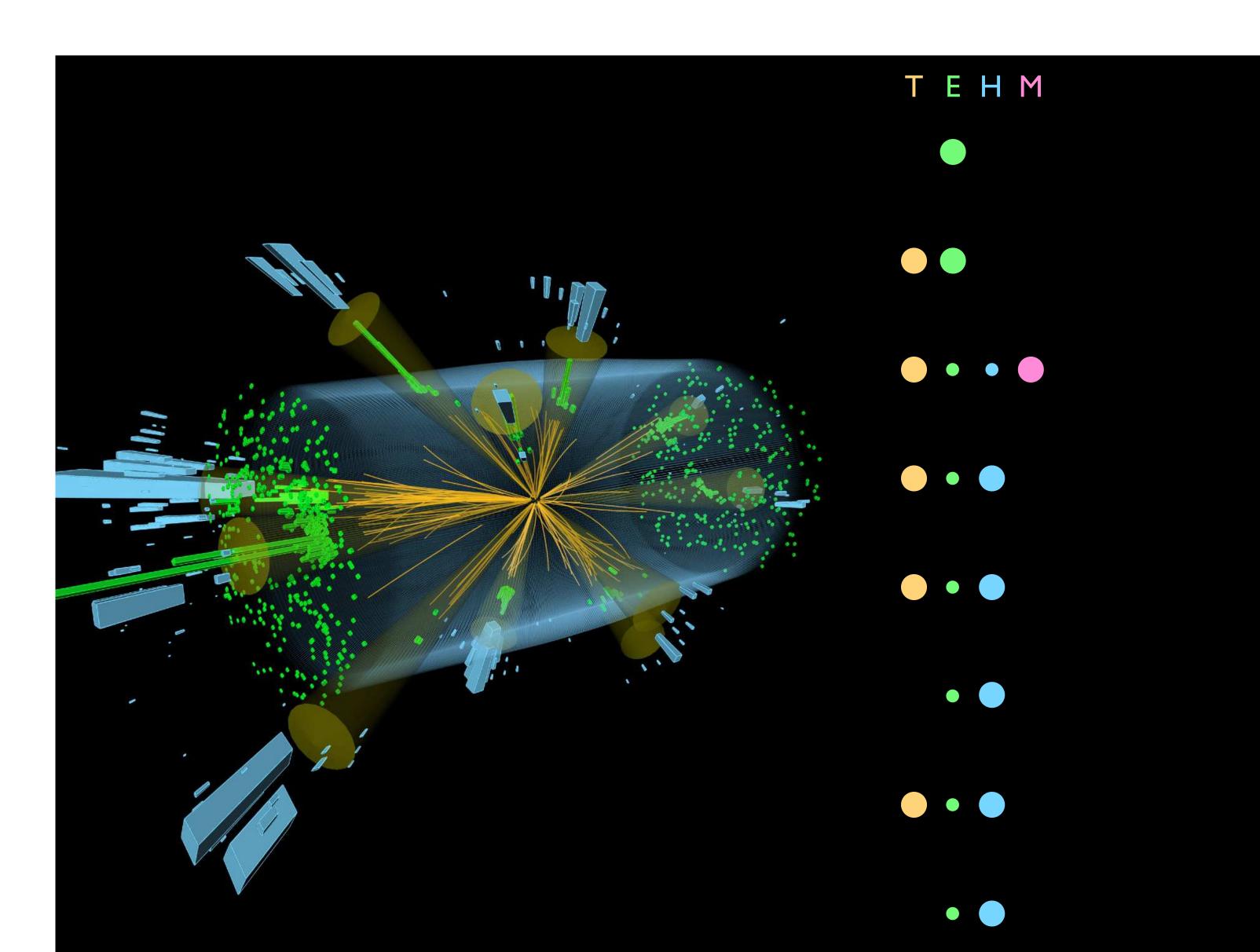
Deep set (energy flow network)

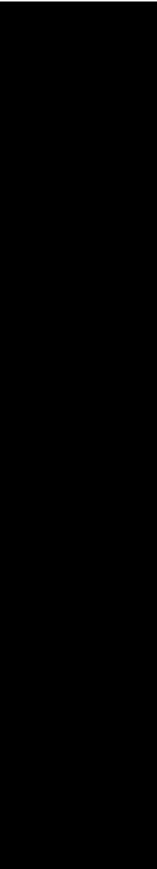
Graph neural network

Lorentz-equivariant network

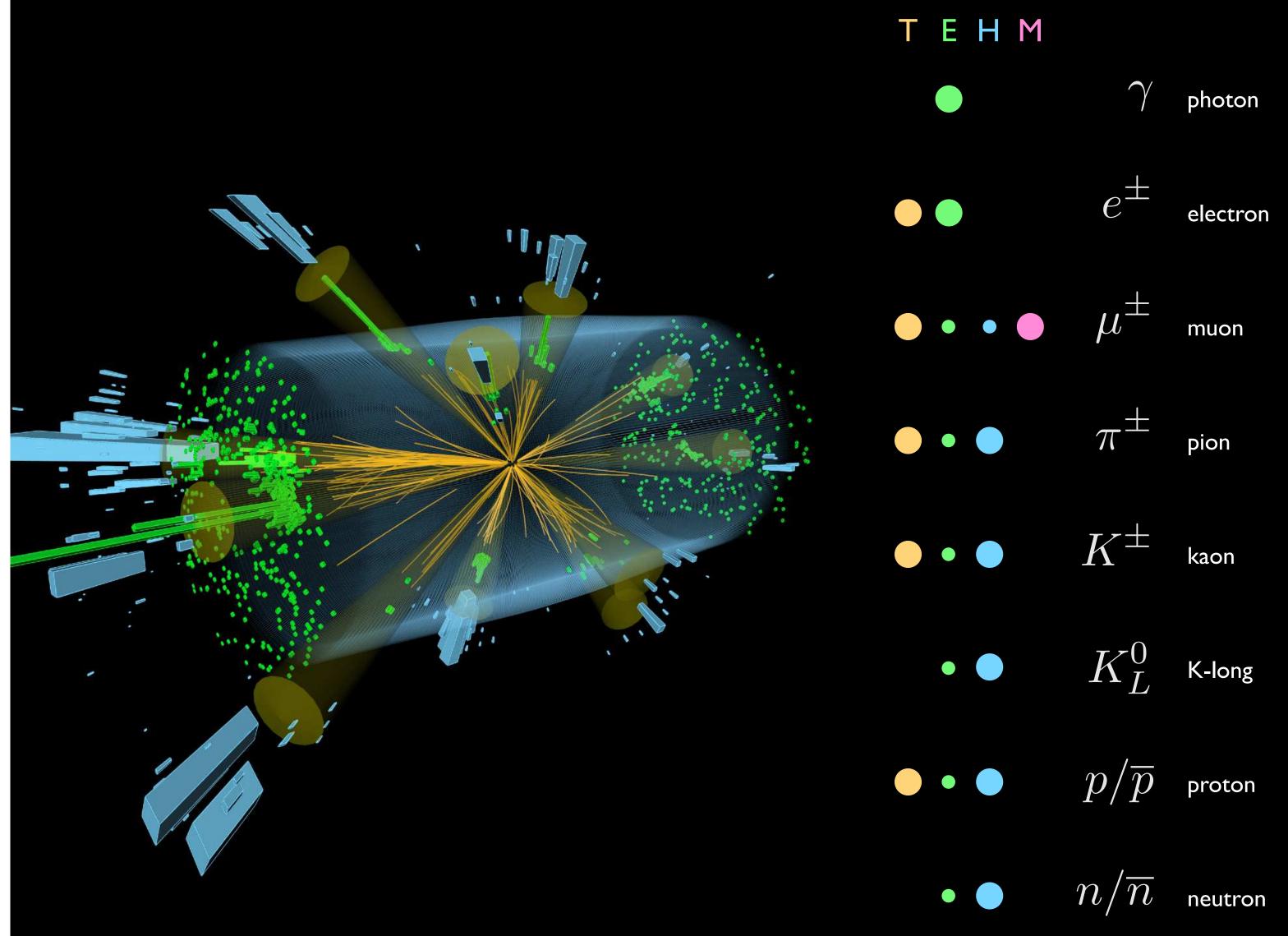




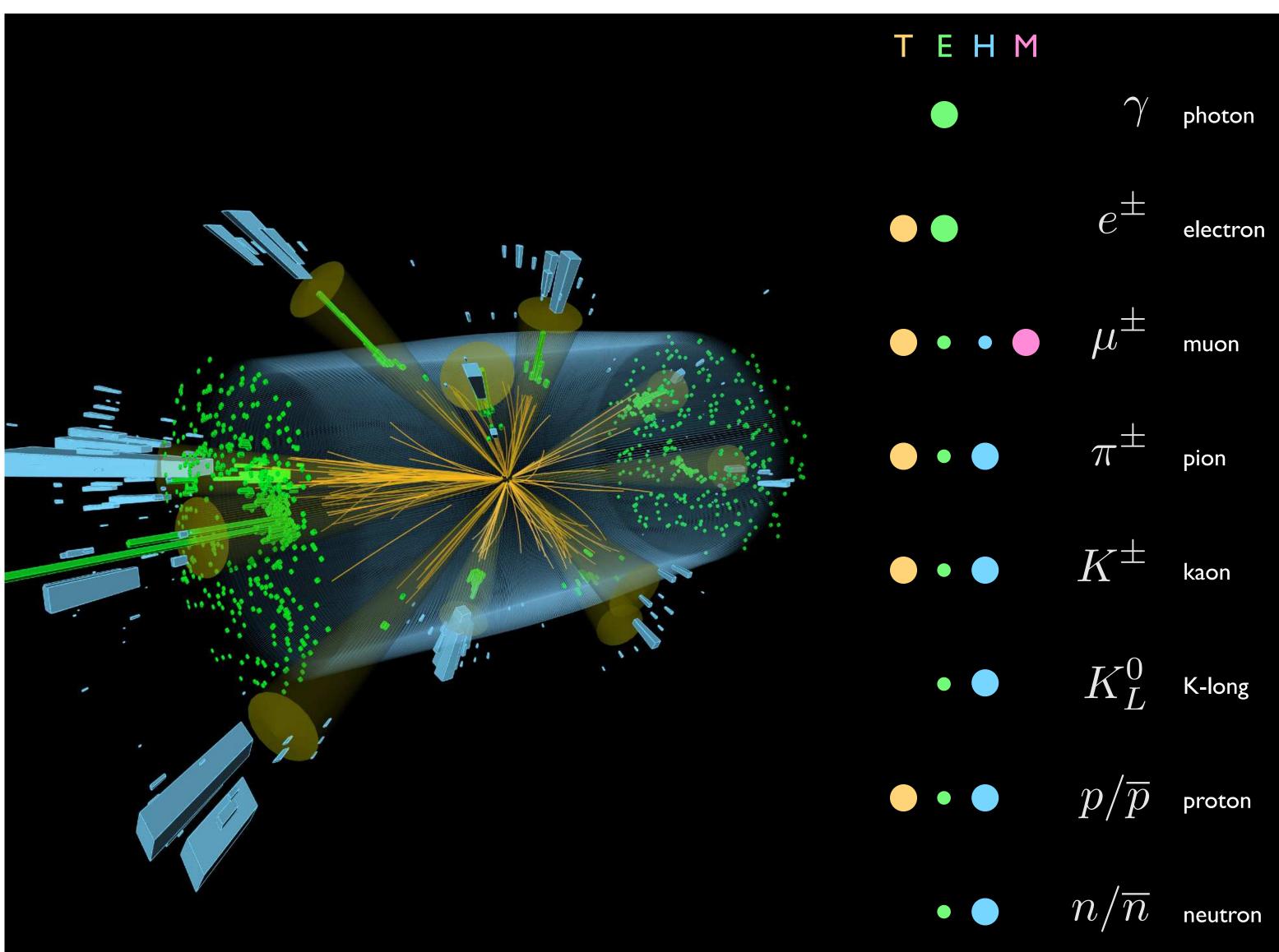




After "particle-flow reconstruction," can think of event as a collection of points in momentum space

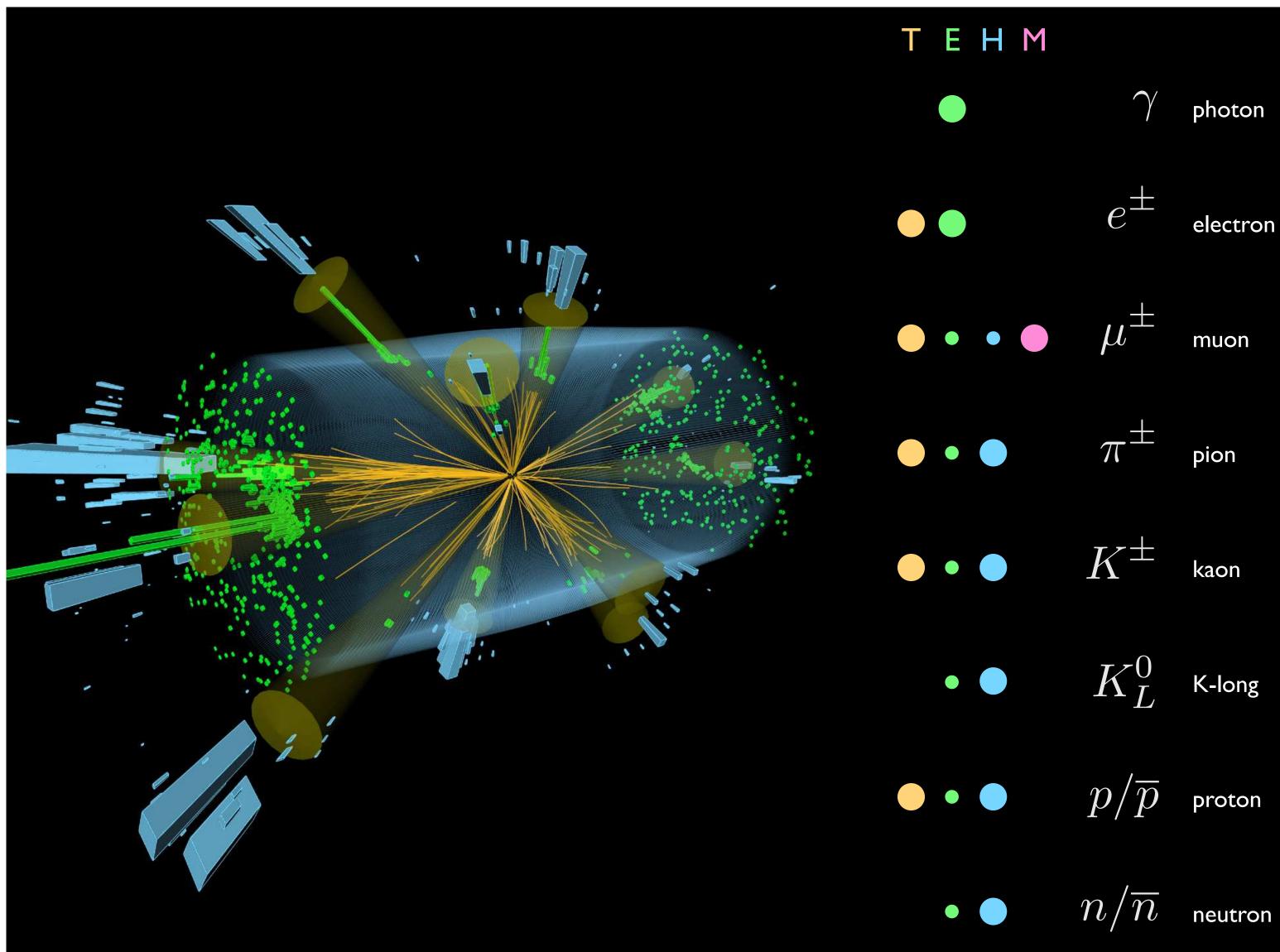


- After "particle-flow reconstruction," ca momentum space
- For jets (localized clusters of particles), dimensionality
 - $(N_{\text{particles}} \sim 100, 4 + M)$



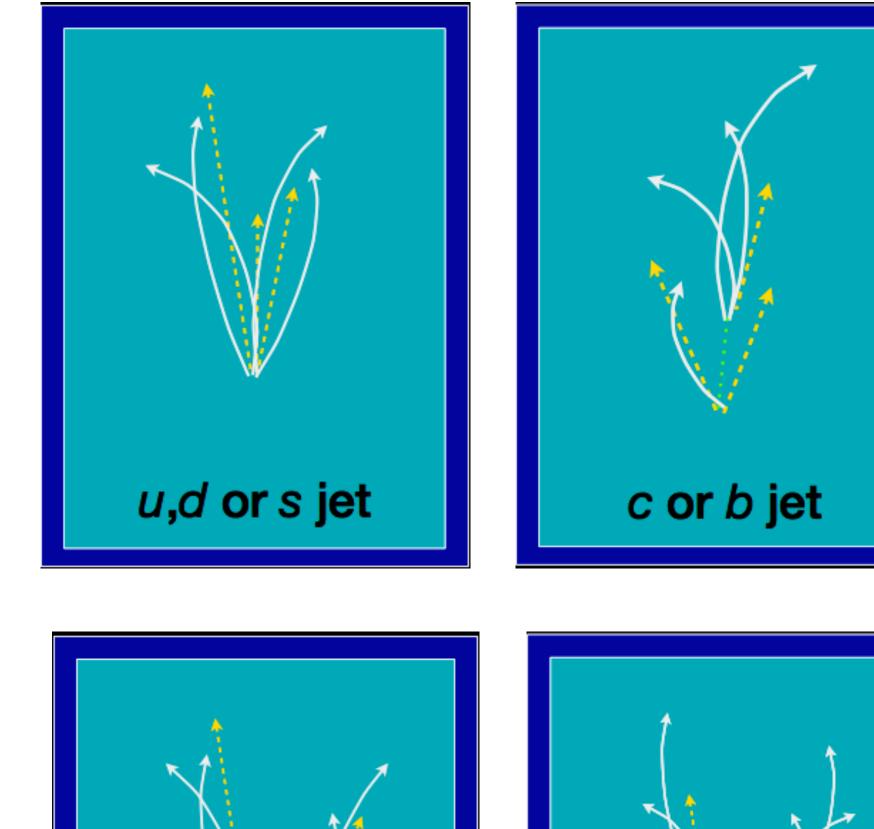
After "particle-flow reconstruction," can think of event as a collection of points in

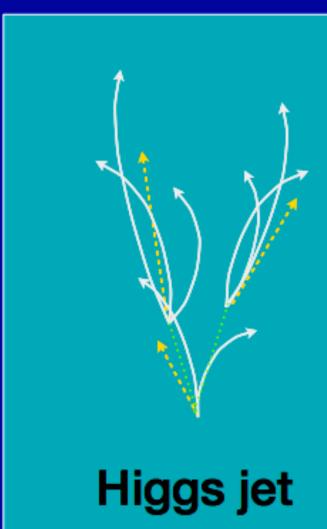
- After "particle-flow reconstruction," ca momentum space
- For jets (localized clusters of particles), dimensionality
 - $(N_{\text{particles}} \sim 100, 4 + M)$
- Variable jet length requires:
 - Preprocessing into another rep. (tab. data, jet images, ...)
 - Truncation to fixed size
 - Graph NN

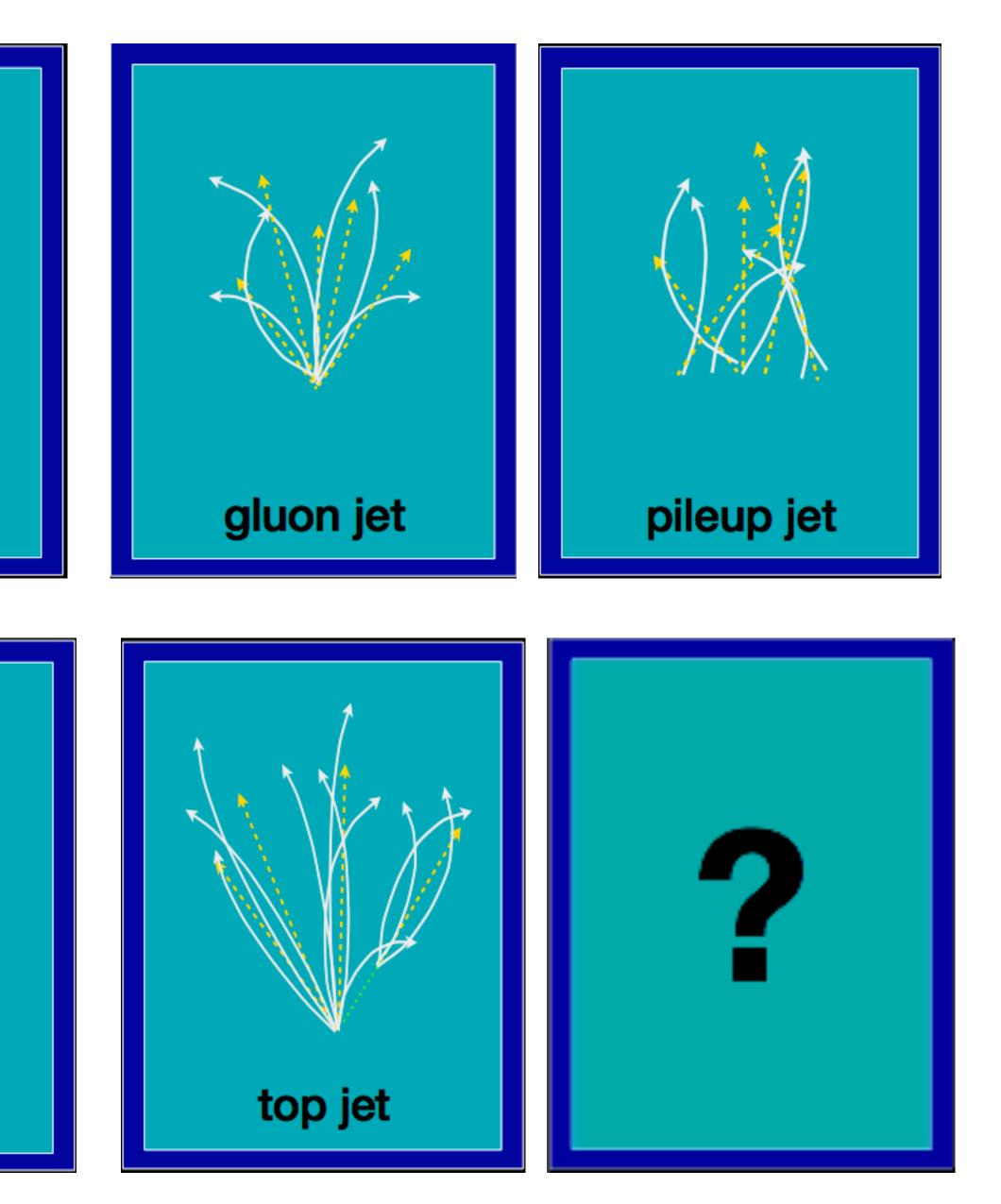


After "particle-flow reconstruction," can think of event as a collection of points in

TASK: JET CLASSIFICATION

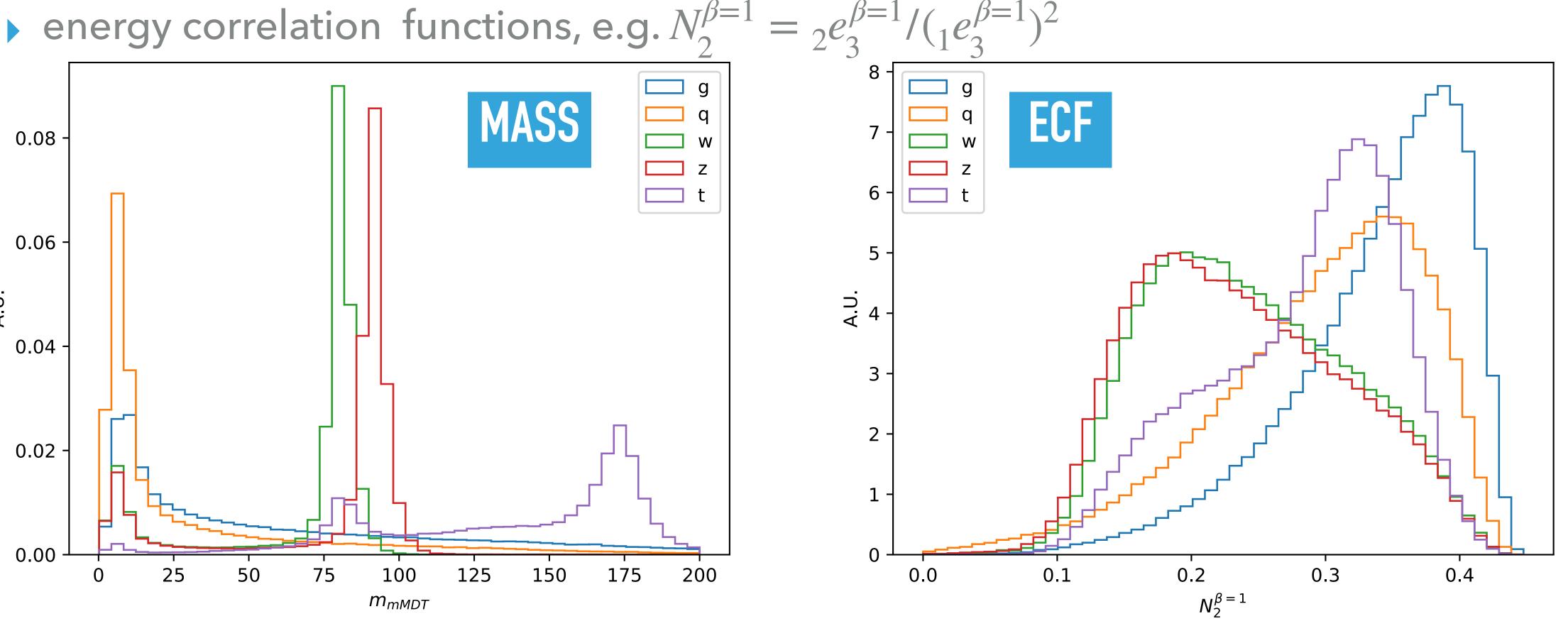


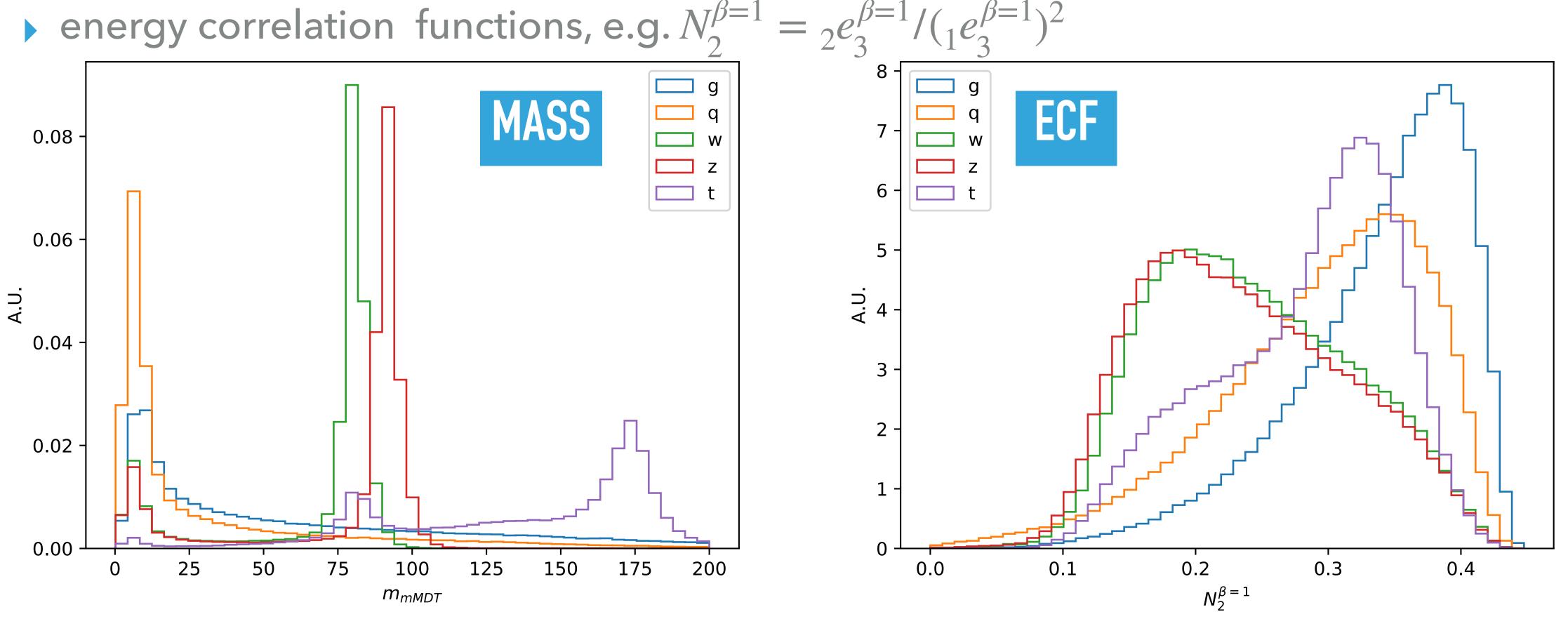




TABULAR DATA: JET SUBSTRUCTURE VARIABLES

- Tabular data: use physics knowledge to preprocess jet information into a set of high-level features
- Substructure variable:
 - jet mass



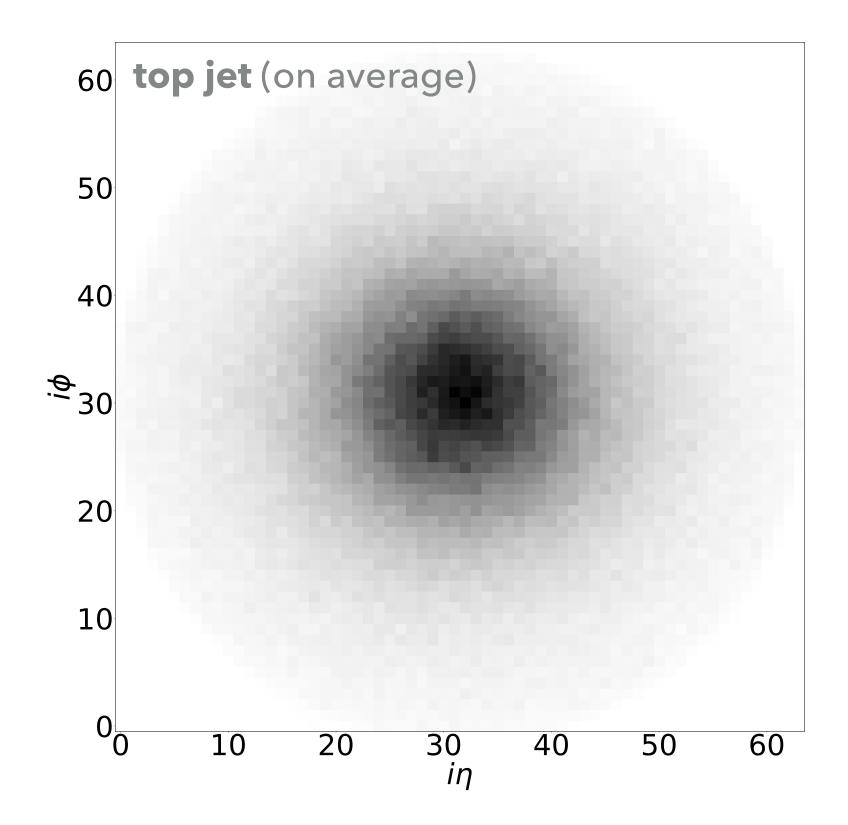


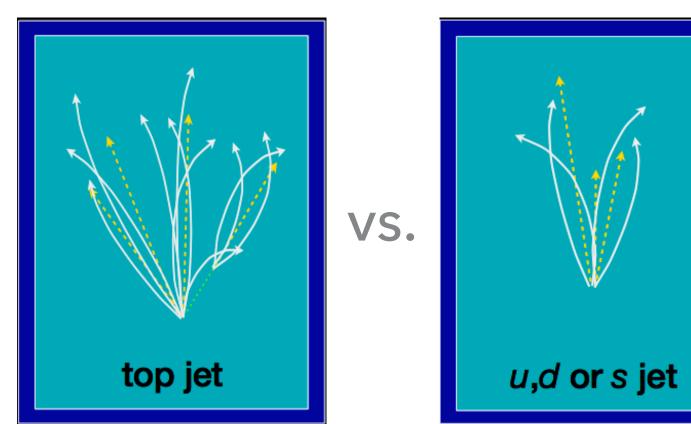
$$_{1}e_{3}^{\beta} = \sum_{1 \leq i < j < k \leq n_{J}} z_{i}z_{j}z_{k} \min\{\Delta R_{ij}^{\beta}, \Delta R_{ik}^{\beta}, \Delta R_{jk}^{\beta}\}$$

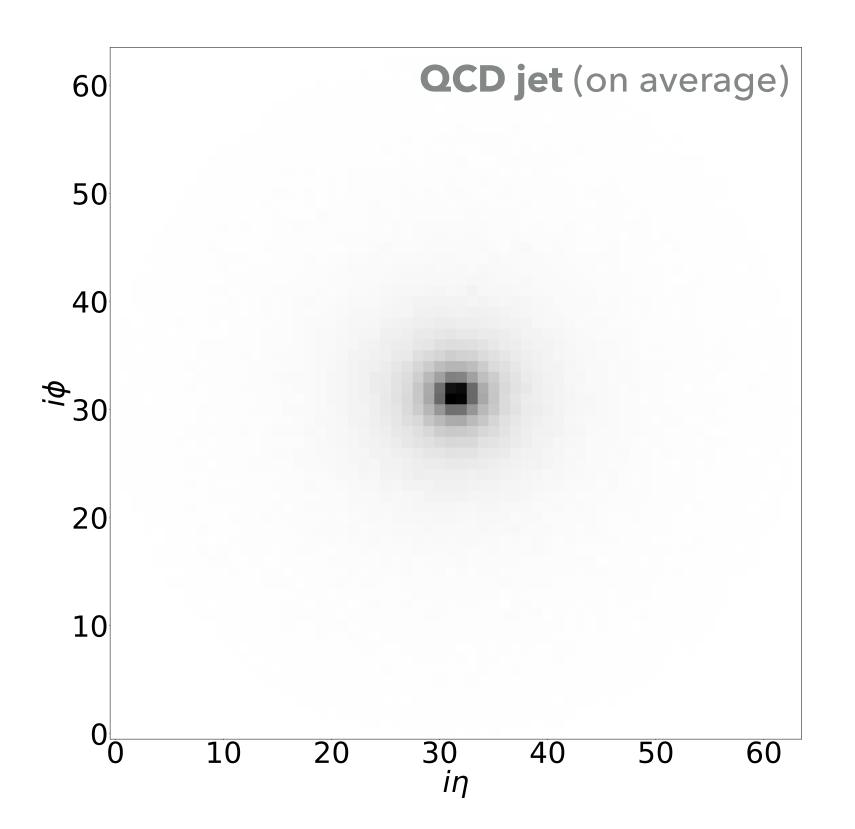
 $_{2}e_{3}^{\beta} = \sum_{1 \leq i < j < k \leq n_{J}} z_{i}z_{j}z_{k} \min\{\Delta R_{ij}^{\beta}\Delta R_{ik}^{\beta}, \Delta R_{ij}^{\beta}\Delta R_{jk}^{\beta}, \Delta R_{jk}^{\beta}\}$

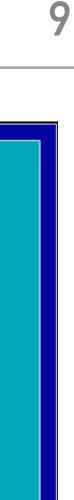
JET IMAGES

- Jet images = pixelated versions of calorimeter hits in 2D (η, φ)
- Much lower level



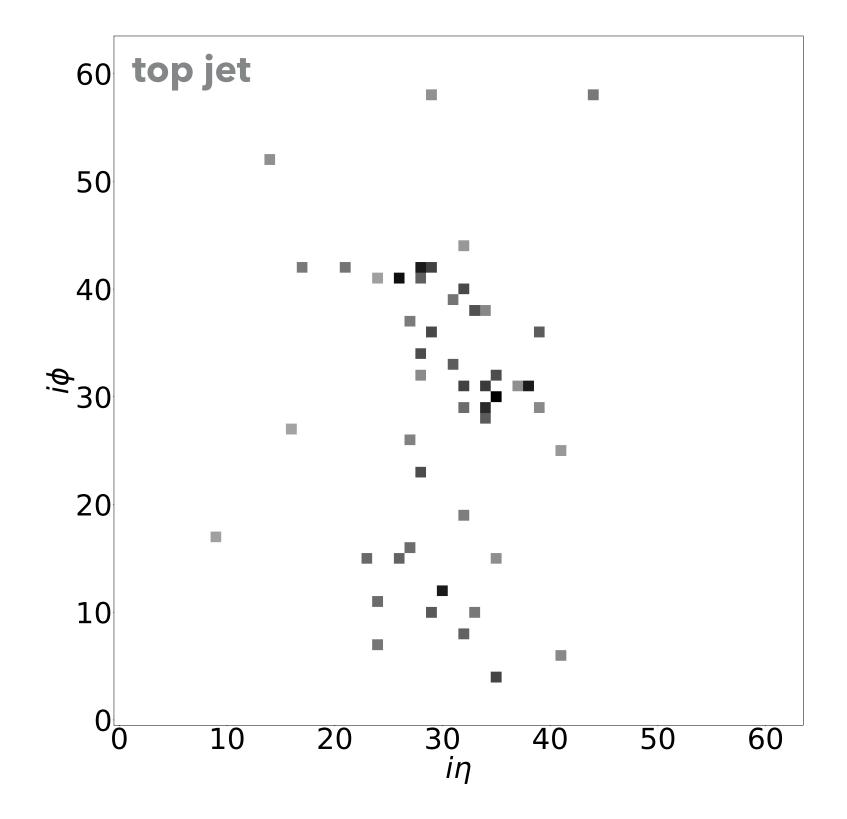


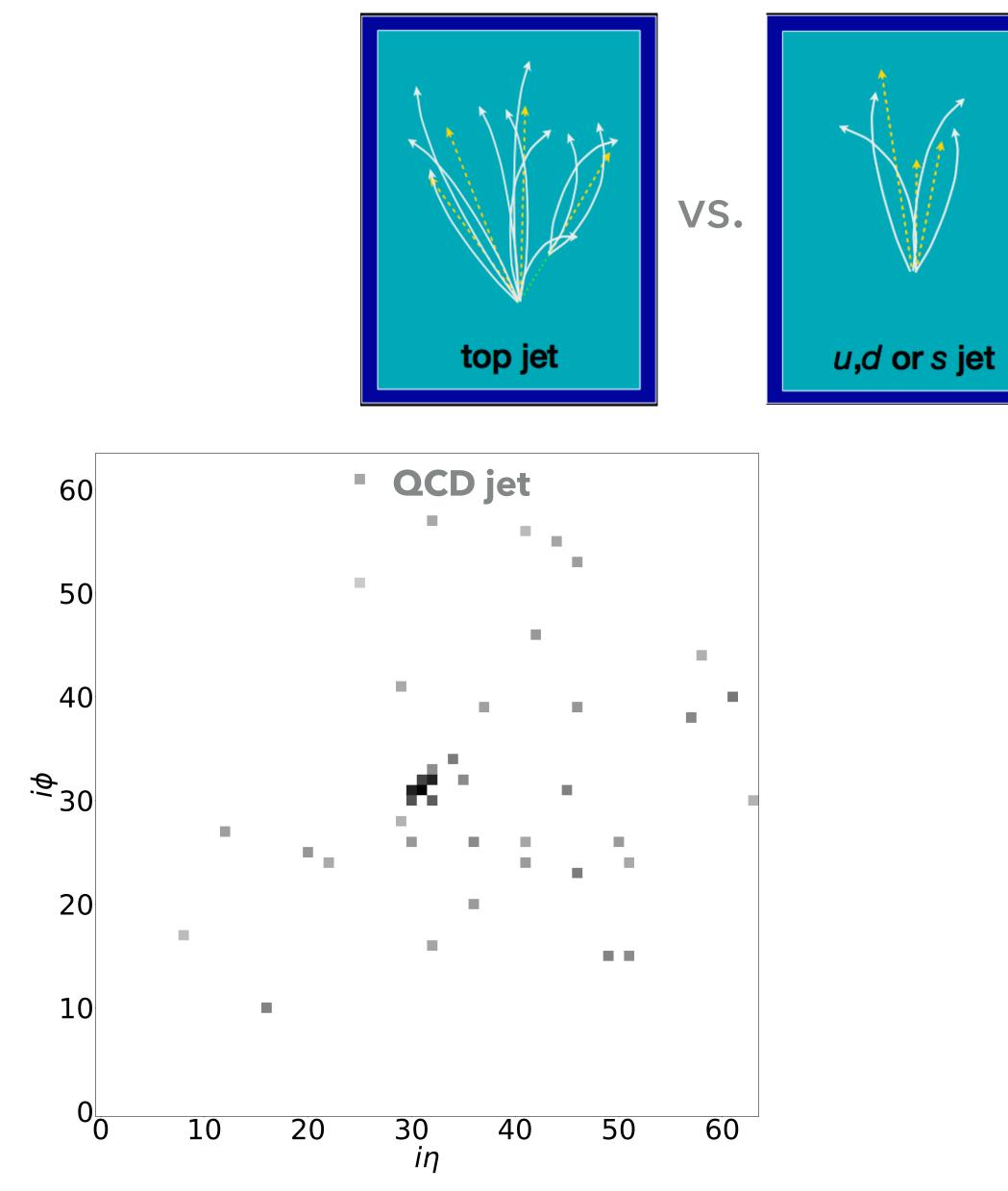


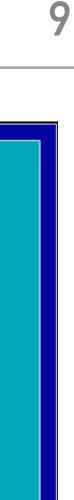


JET IMAGES

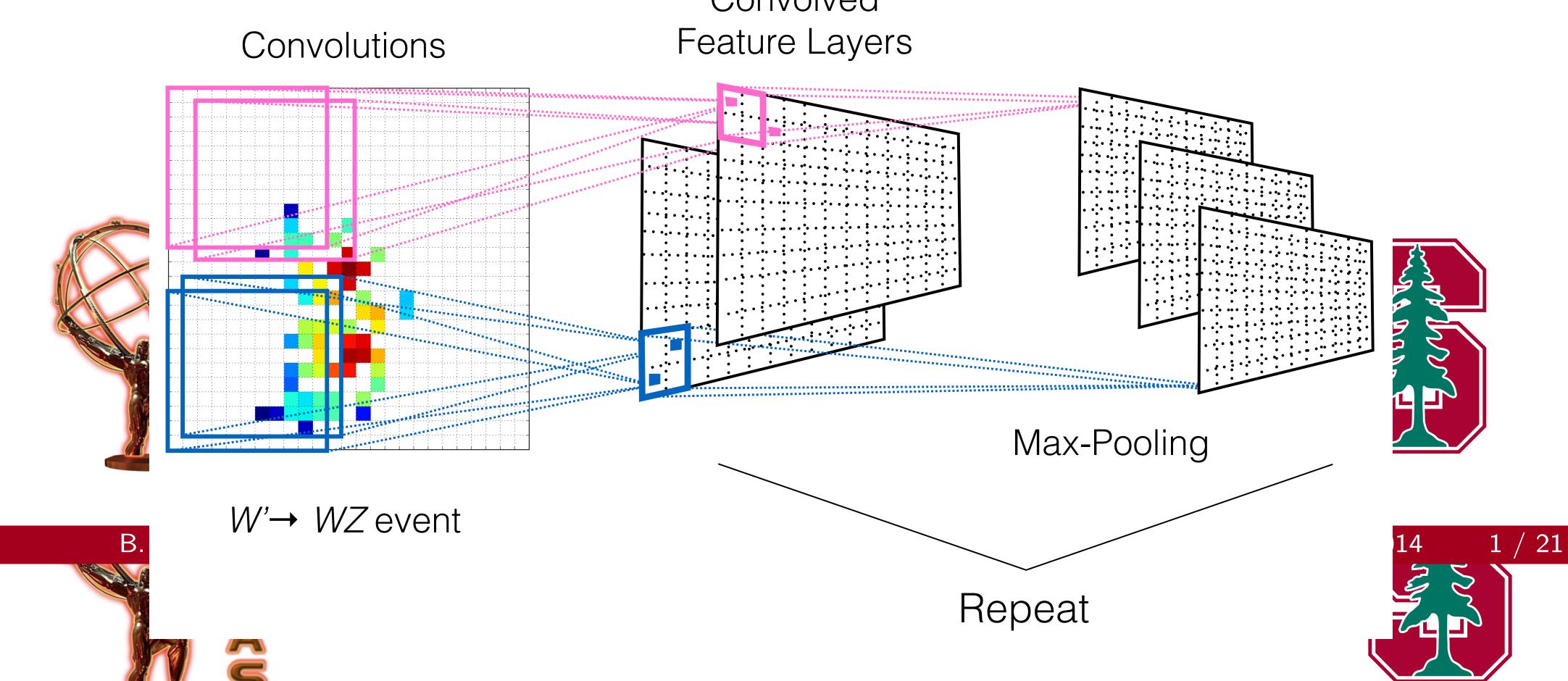
- Jet images = pixelated versions of calorimeter hits in 2D (η, φ)
- Much lower level

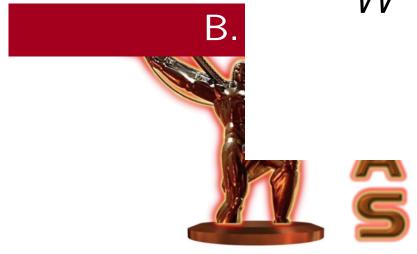






Boosted Boson 'Lype 'Lagging





Jet ETmiss

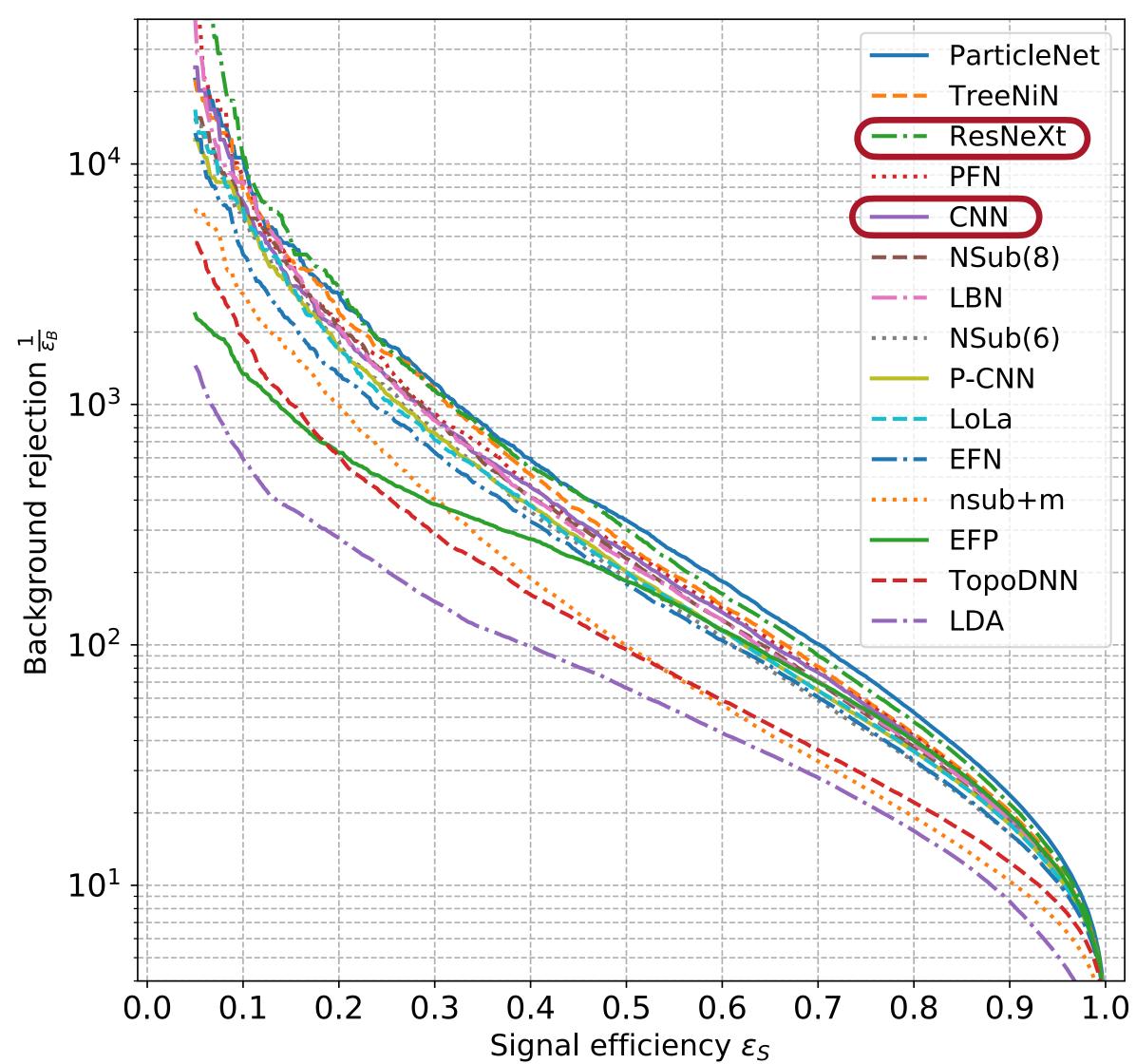
Convolved

CNN PERFORMANCE

CNNs among the best performing algorithms

	AUC	Acc	· · · · · · · · · · · · · · · · · · ·	$\epsilon_B \ (\epsilon_S = 0.3)$	/	#Param
			single	mean	median	
CNN [16]	0.981	0.930	$914{\pm}14$	$995 {\pm} 15$	$975{\pm}18$	610k
ResNeXt [31]	0.984	0.936	1122 ± 47	1270 ± 28	1286 ± 31	$1.46\mathrm{M}$
TopoDNN [18]	0.972	0.916	295 ± 5	$382\pm$ 5	378 ± 8	59k
Multi-body N -subjettiness 6 [24]	0.979	0.922	792 ± 18	$798{\pm}12$	808 ± 13	57k
Multi-body N -subjettiness 8 [24]	0.981	0.929	867 ± 15	$918{\pm}20$	$926 {\pm} 18$	58k
TreeNiN $[43]$	0.982	0.933	$1025 {\pm} 11$	1202 ± 23	1188 ± 24	34k
P-CNN	0.980	0.930	732 ± 24	845 ± 13	834 ± 14	348k
ParticleNet [47]	0.985	0.938	$1298 {\pm} 46$	$1412{\pm}45$	$1393 {\pm} 41$	498k
LBN $[19]$	0.981	0.931	836 ± 17	$859{\pm}67$	$966{\pm}20$	705k
LoLa [22]	0.980	0.929	$722{\pm}17$	768 ± 11	$765{\pm}11$	127k
LDA [54]	0.955	0.892	$151{\pm}0.4$	$151.5 {\pm} 0.5$	$151.7 {\pm} 0.4$	184k
Energy Flow Polynomials [21]	0.980	0.932	384			1k
Energy Flow Network [23]	0.979	0.927	633 ± 31	729 ± 13	$726{\pm}11$	82k
Particle Flow Network [23]	0.982	0.932	891 ± 18	1063 ± 21	1052 ± 29	82k
GoaT	0.985	0.939	1368±140		$1549{\pm}208$	35k

<u>arXiv:1902.09914</u> 11

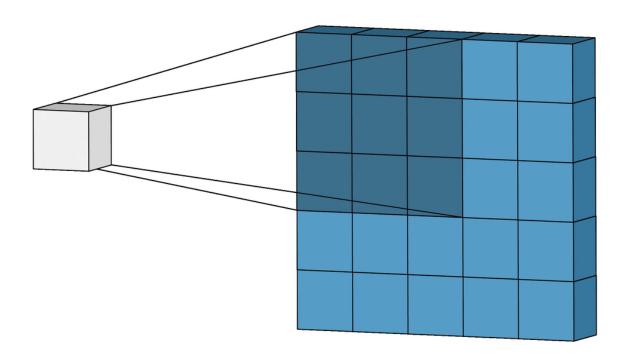


data has led to groundbreaking performance

arXiv:2007.13681 arXiv:2012.01249

?	1	2

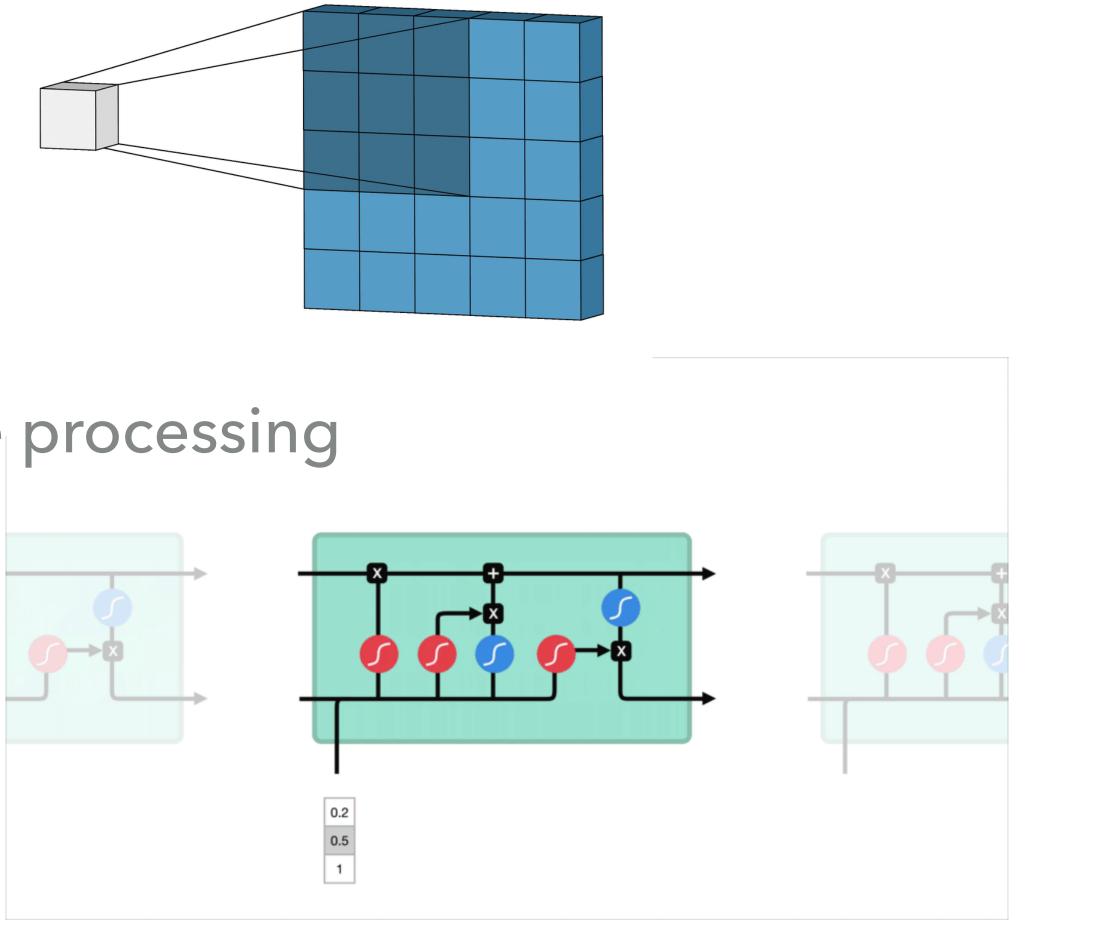
- data has led to groundbreaking performance
 - CNNs for images



arXiv:2007.13681 arXiv:2012.01249

?	1	2

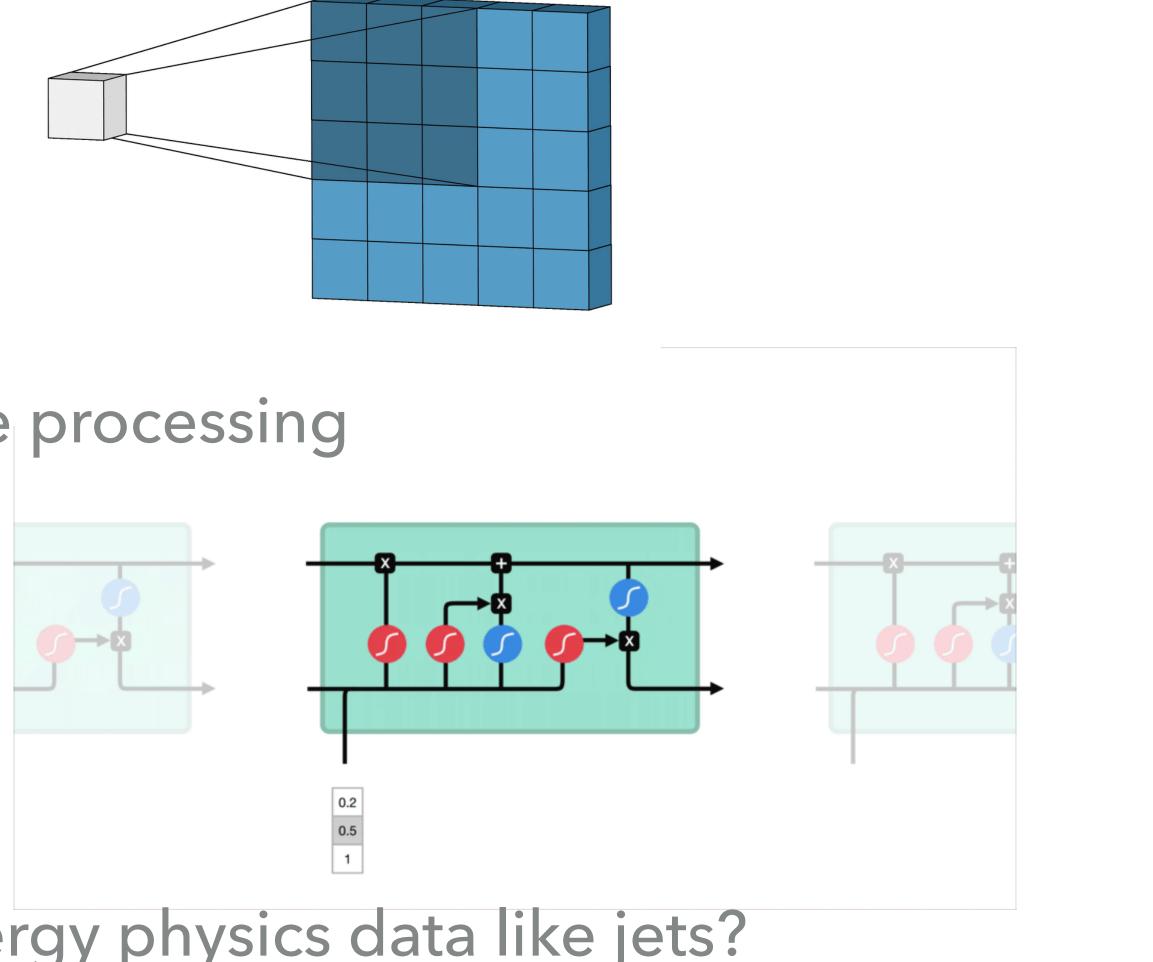
- data has led to groundbreaking performance
 - CNNs for images



arXiv:2007.13681 arXiv:2012.01249

?	1	2

- data has led to groundbreaking performance
 - CNNs for images

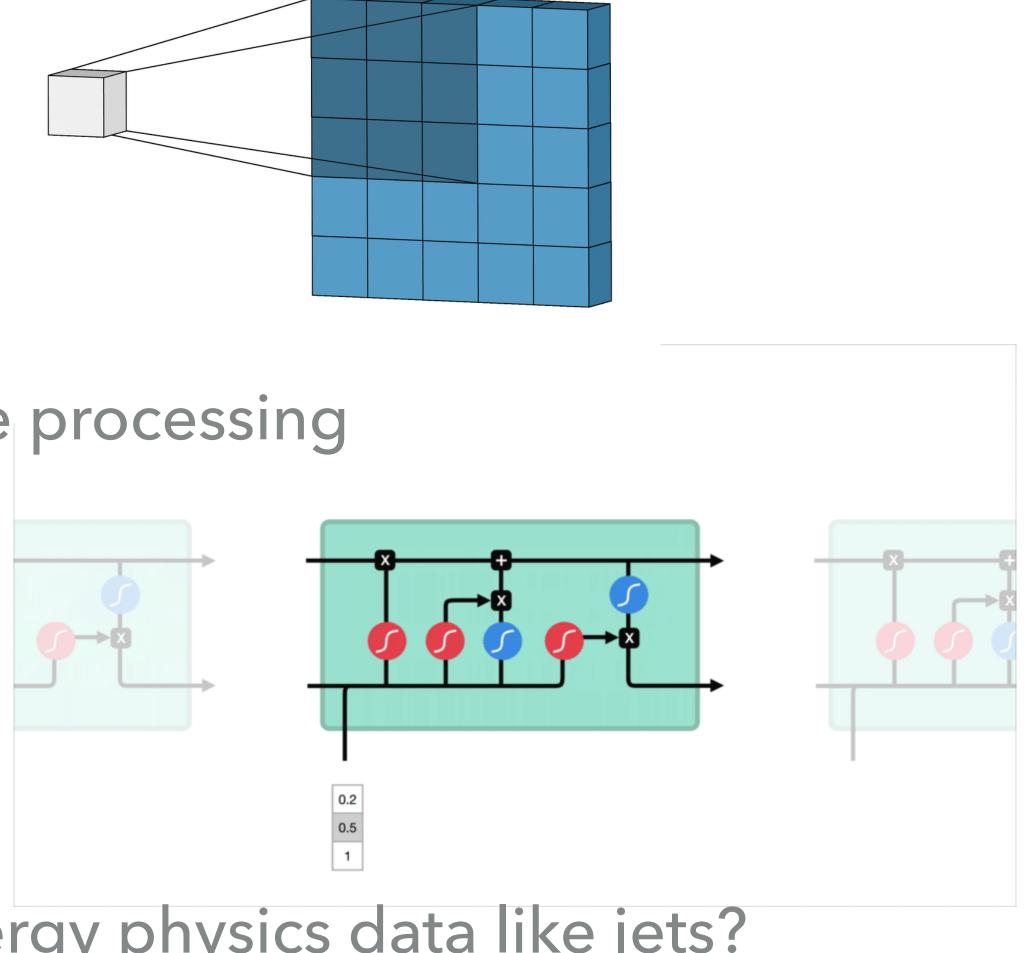


What about high energy physics data like jets?

arXiv:2007.13681 arXiv:2012.01249

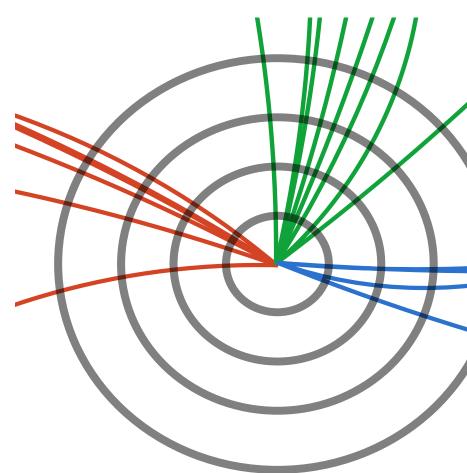
?	1	2

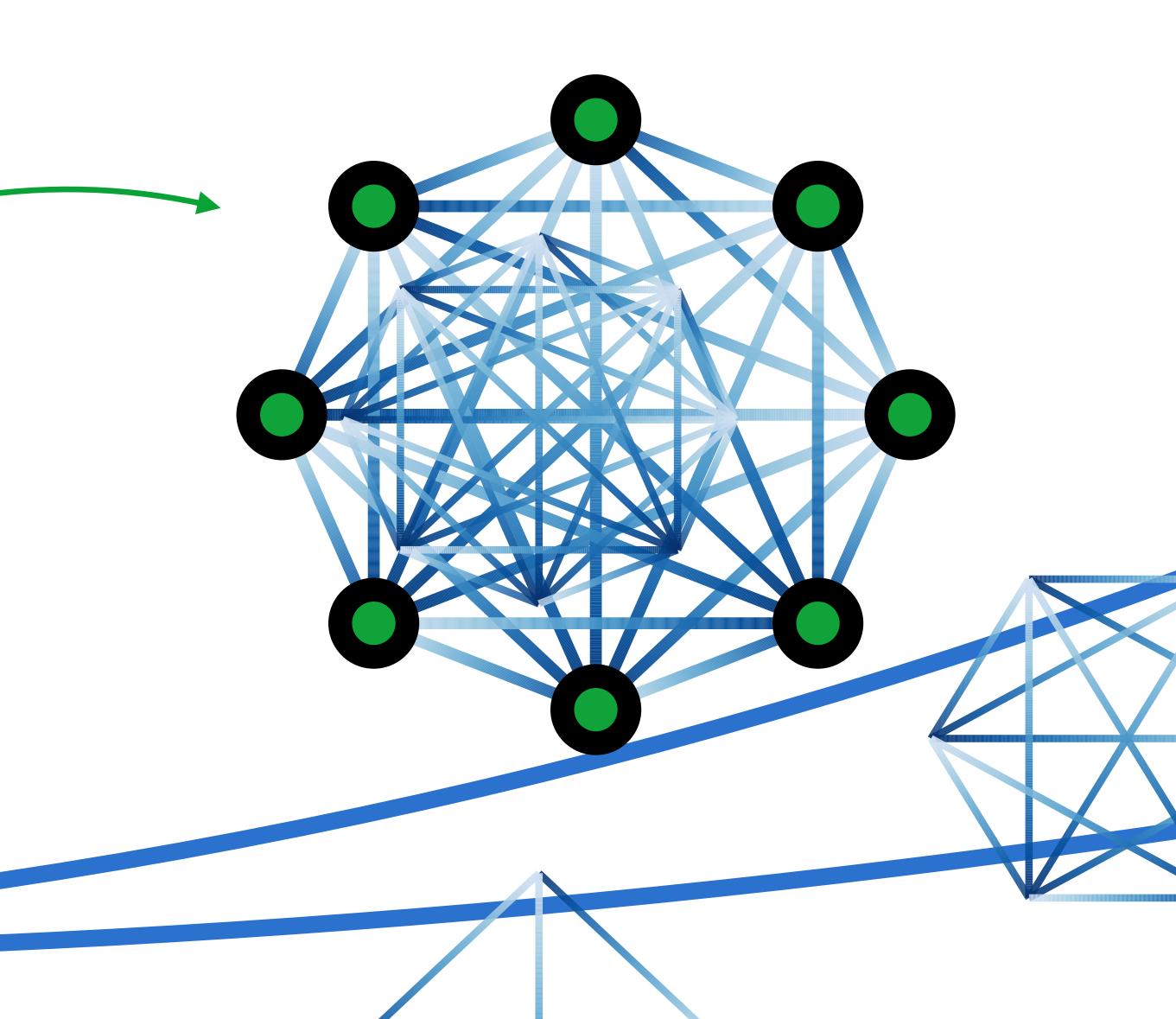
- data has led to groundbreaking performance
 - CNNs for images



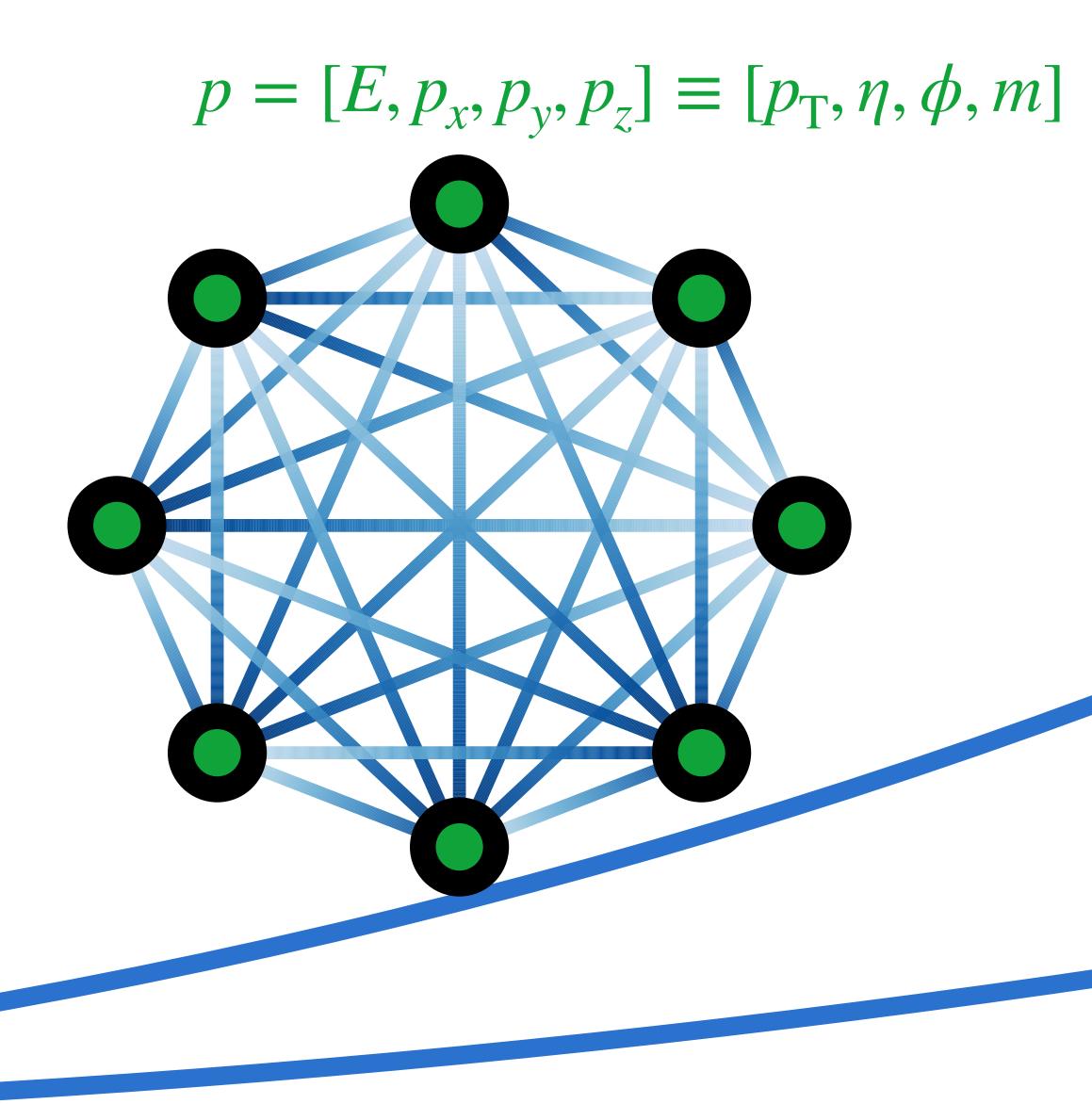
What about high energy physics data like jets?

- Distributed
 - unevenly in space
- Sparse
- Variable size
- No defined order
- Interconnections
 - → Graphs



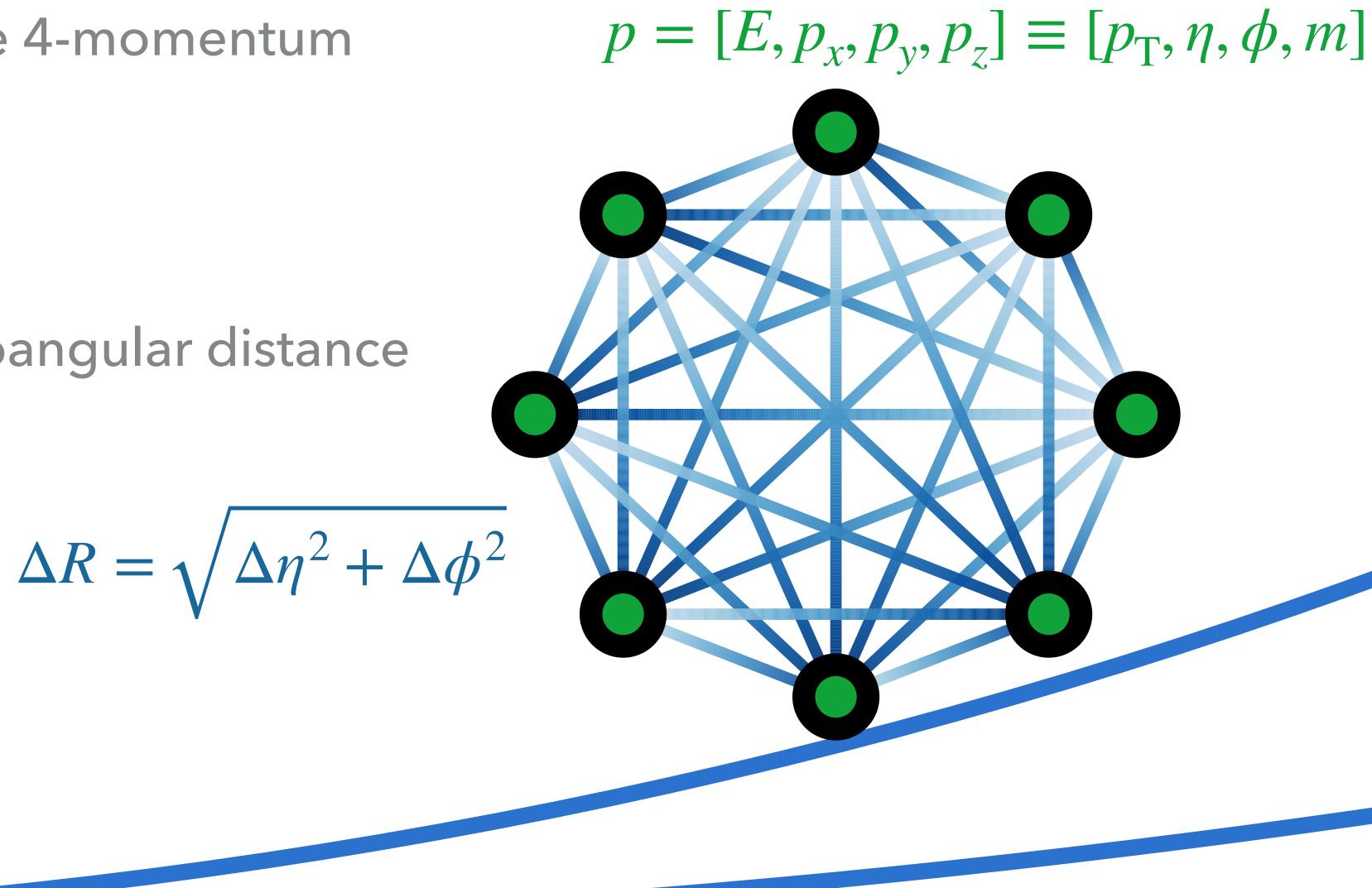


Node features v_i: particle 4-momentum



Node features v_i: particle 4-momentum

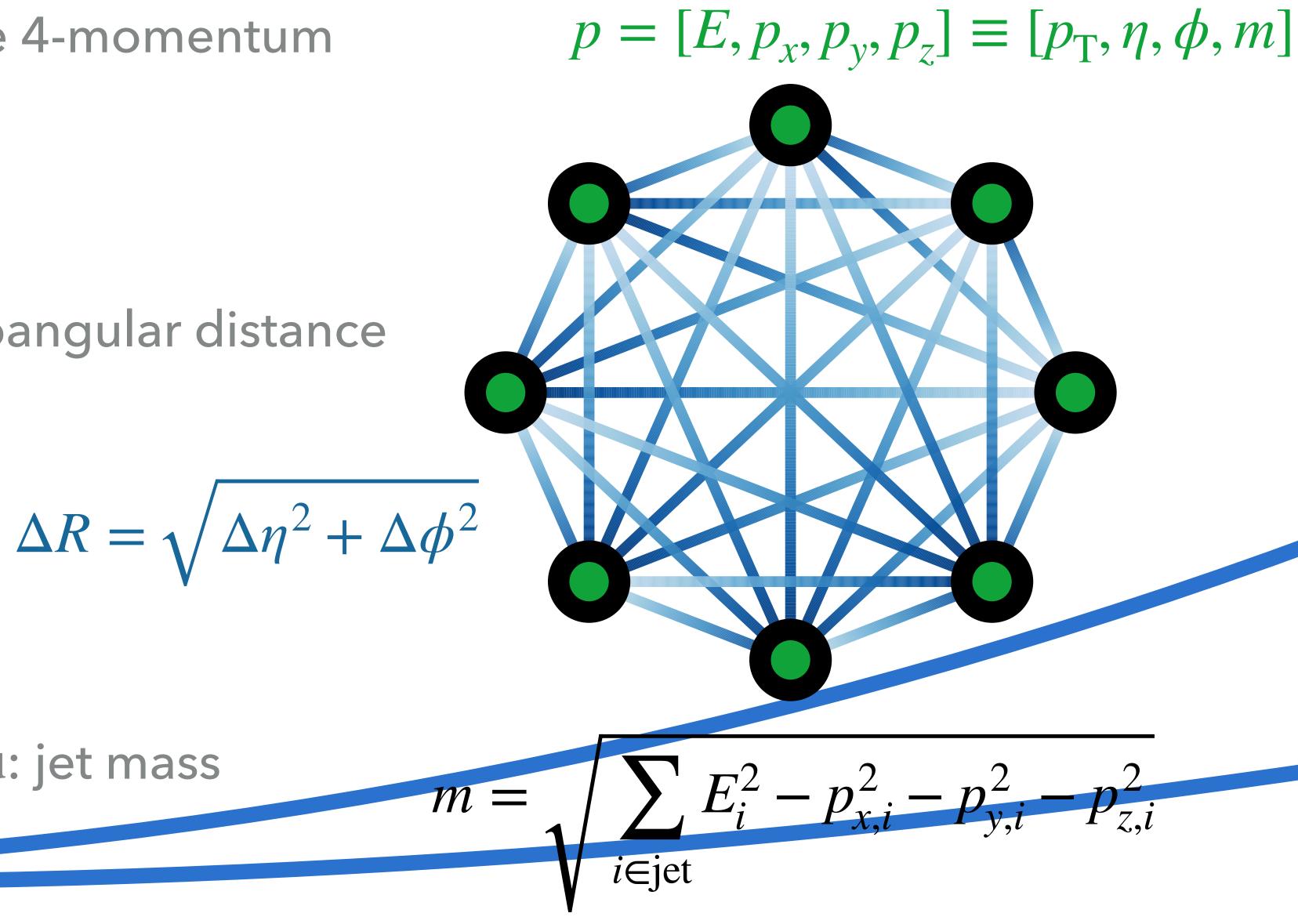
Edge features e_k : pseudoangular distance betwern particles



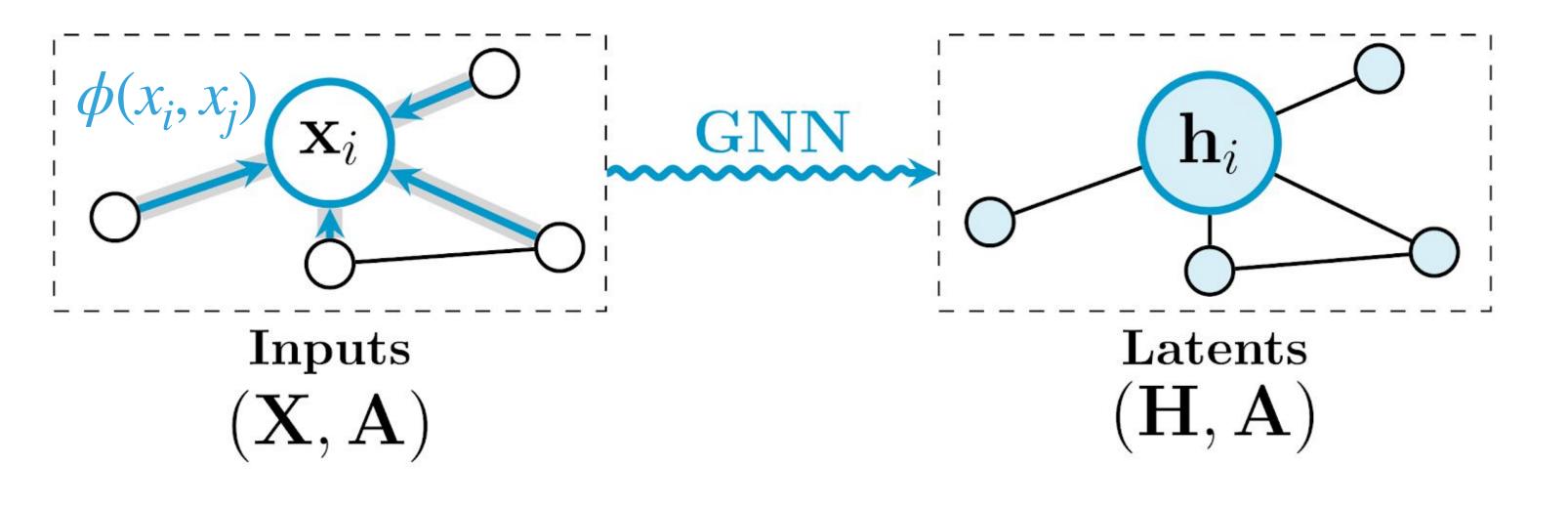
Node features v_i: particle 4-momentum

Edge features e_k : pseudoangular distance between particles

Griph (globa) features u: jet mass

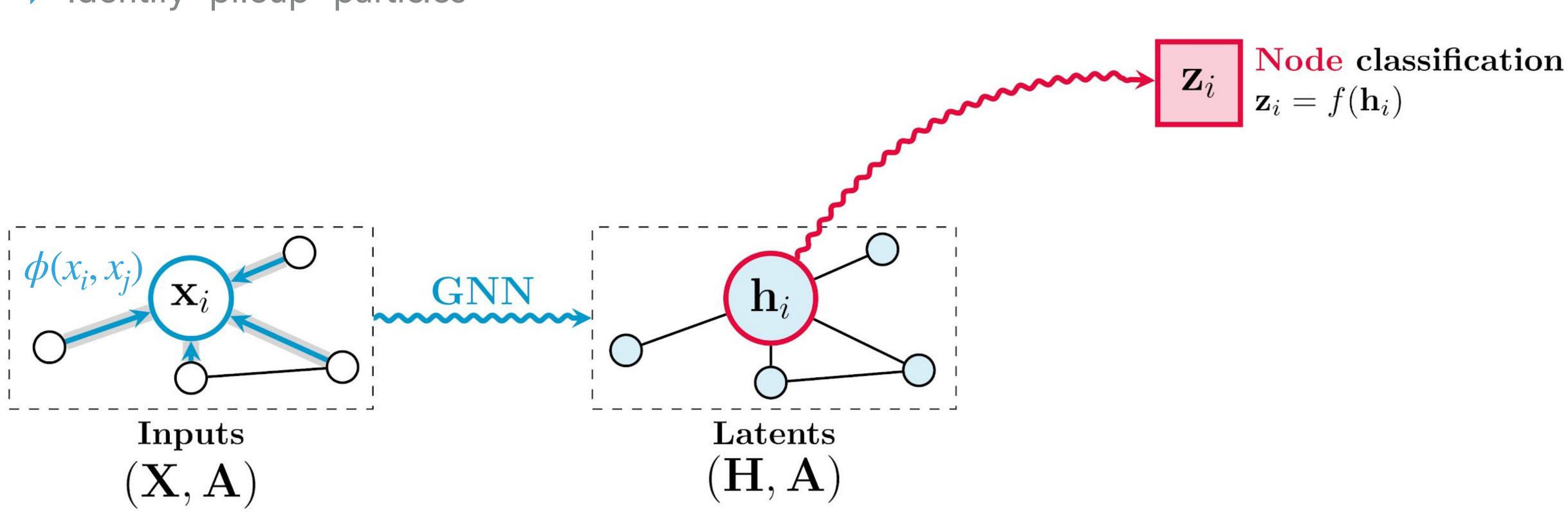


HOW TO USE GNNS IN HEP



HOW TO USE GNNS IN HEP

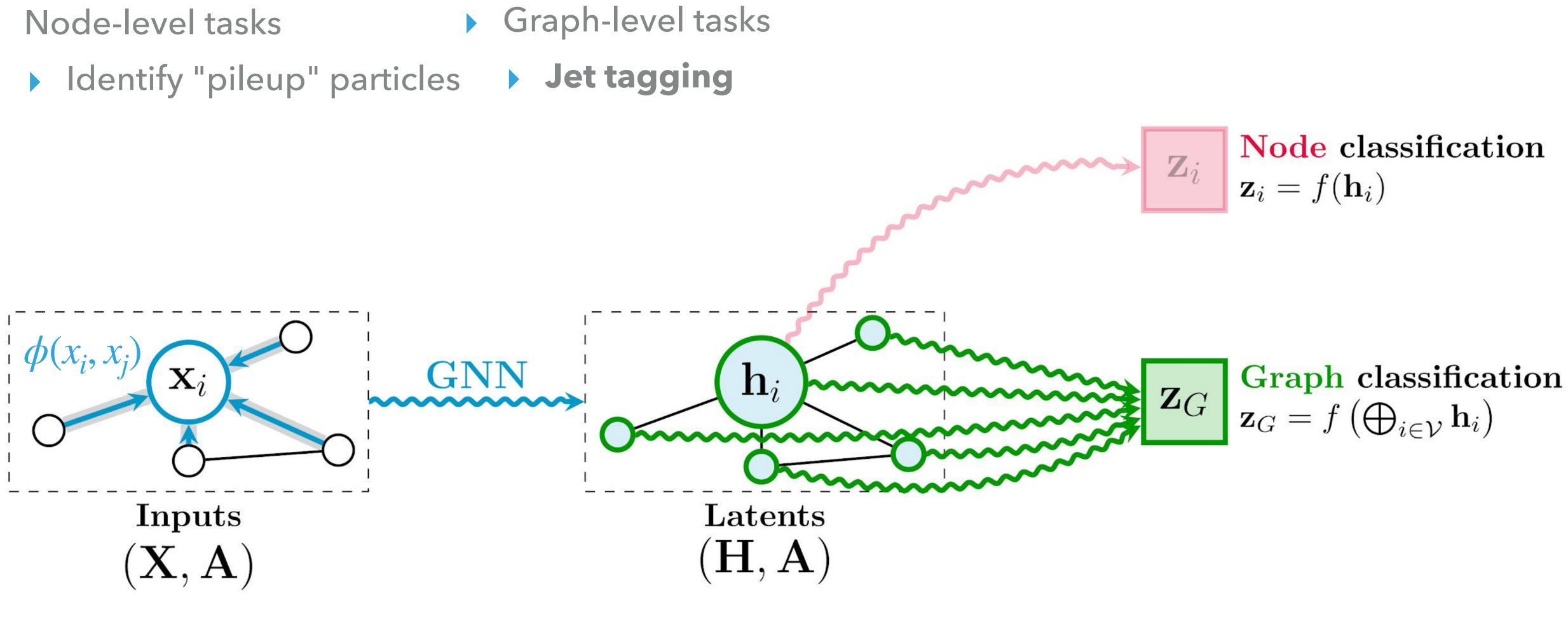
- Node-level tasks
 - Identify "pileup" particles



HOW TO USE GNNS IN HEP

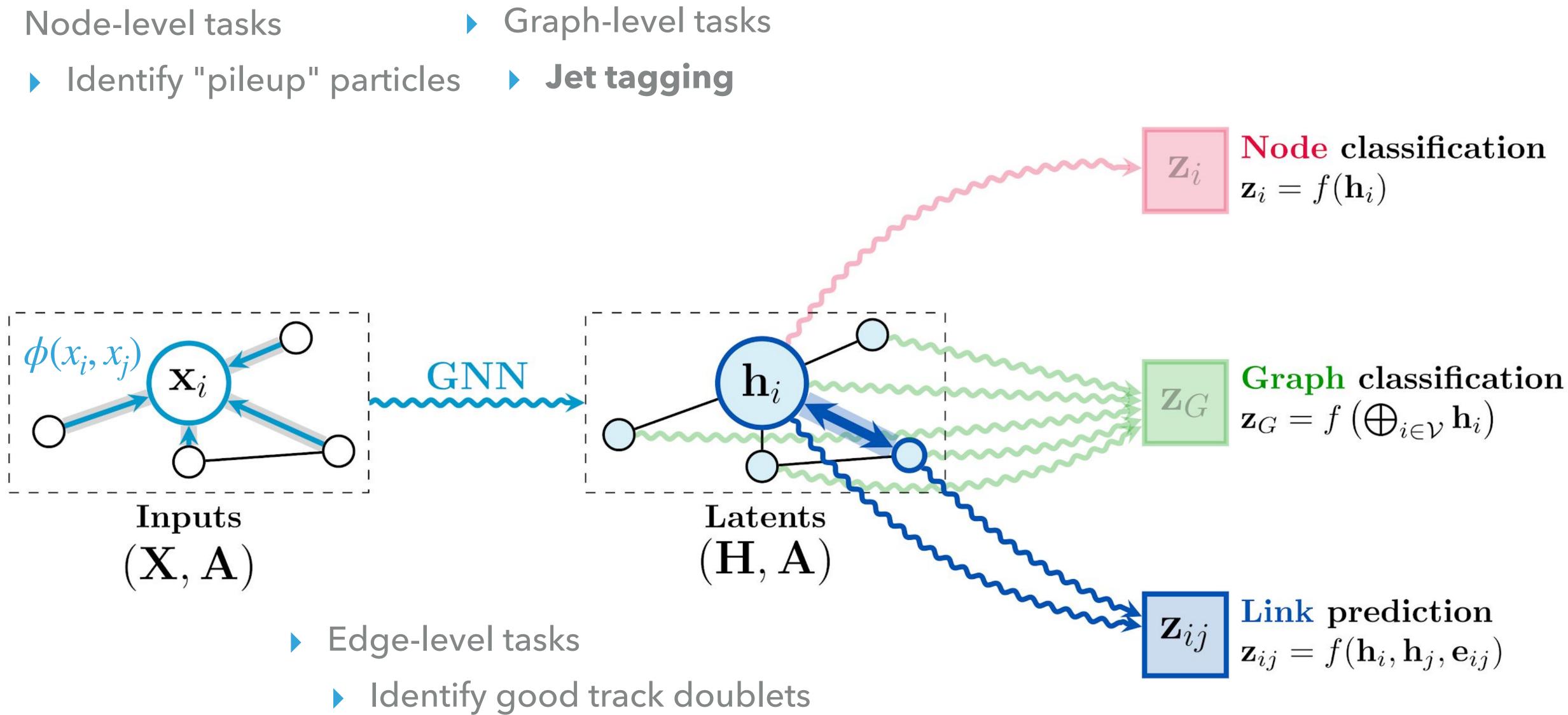
Node-level tasks

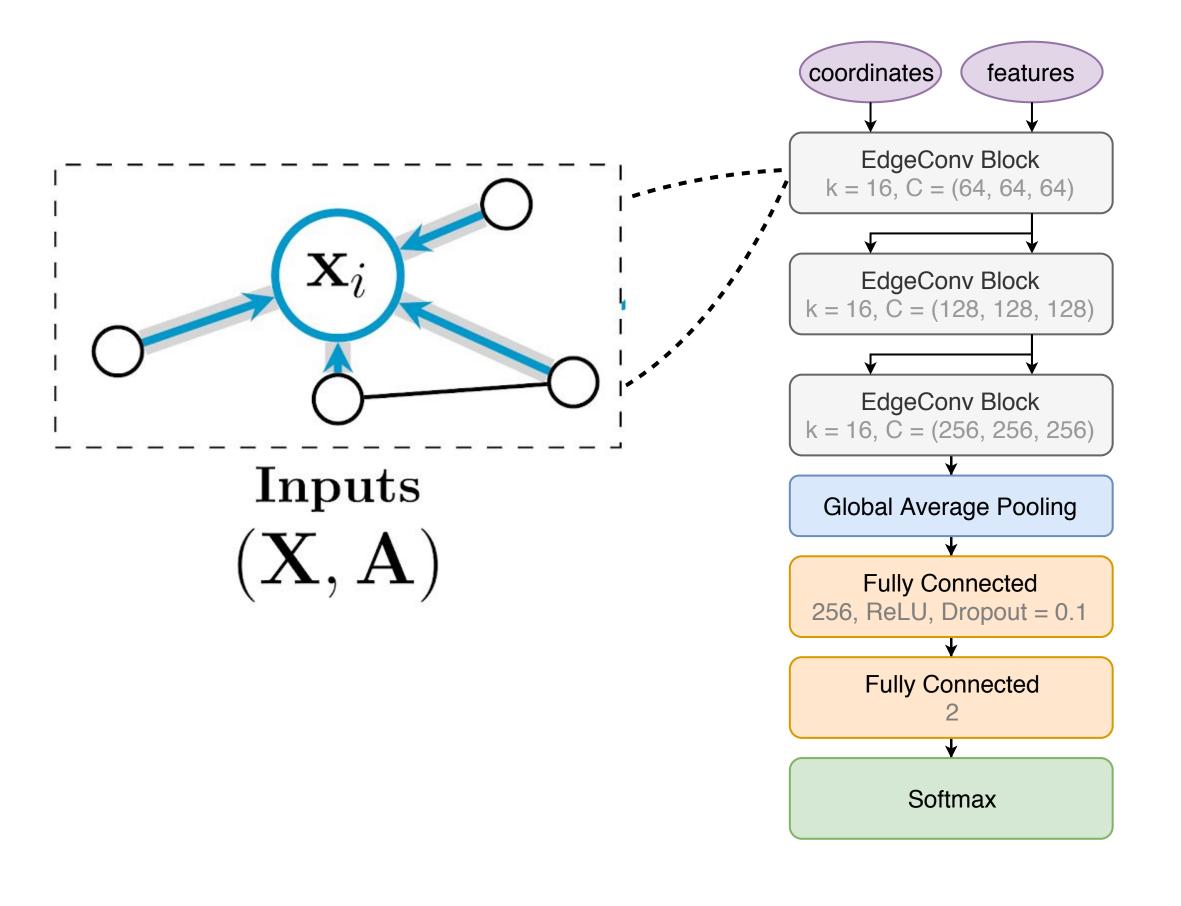
- Identify "pileup" particles



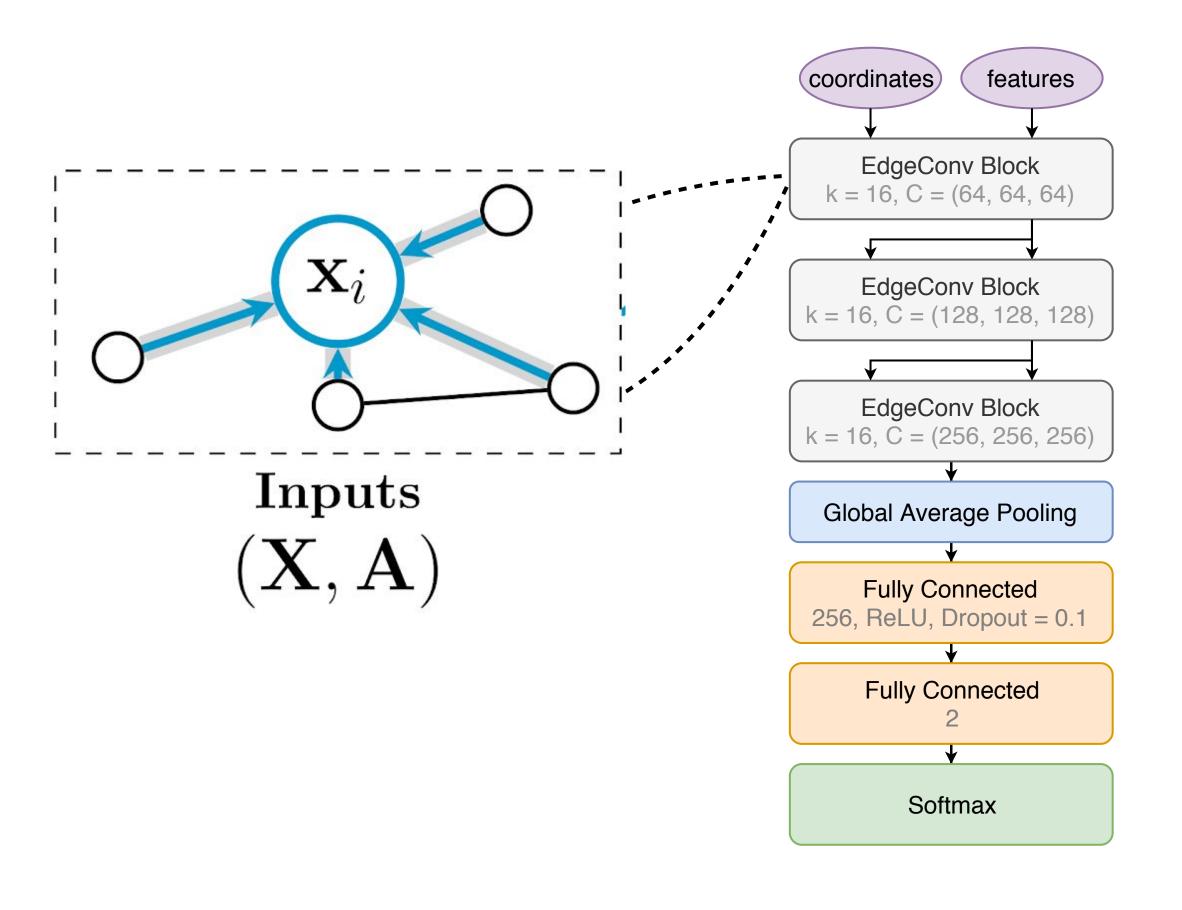
HOW TO USE GNNS IN HEP

- Node-level tasks
- - Identify "pileup" particles





"closeness" in an abstract "latent" space

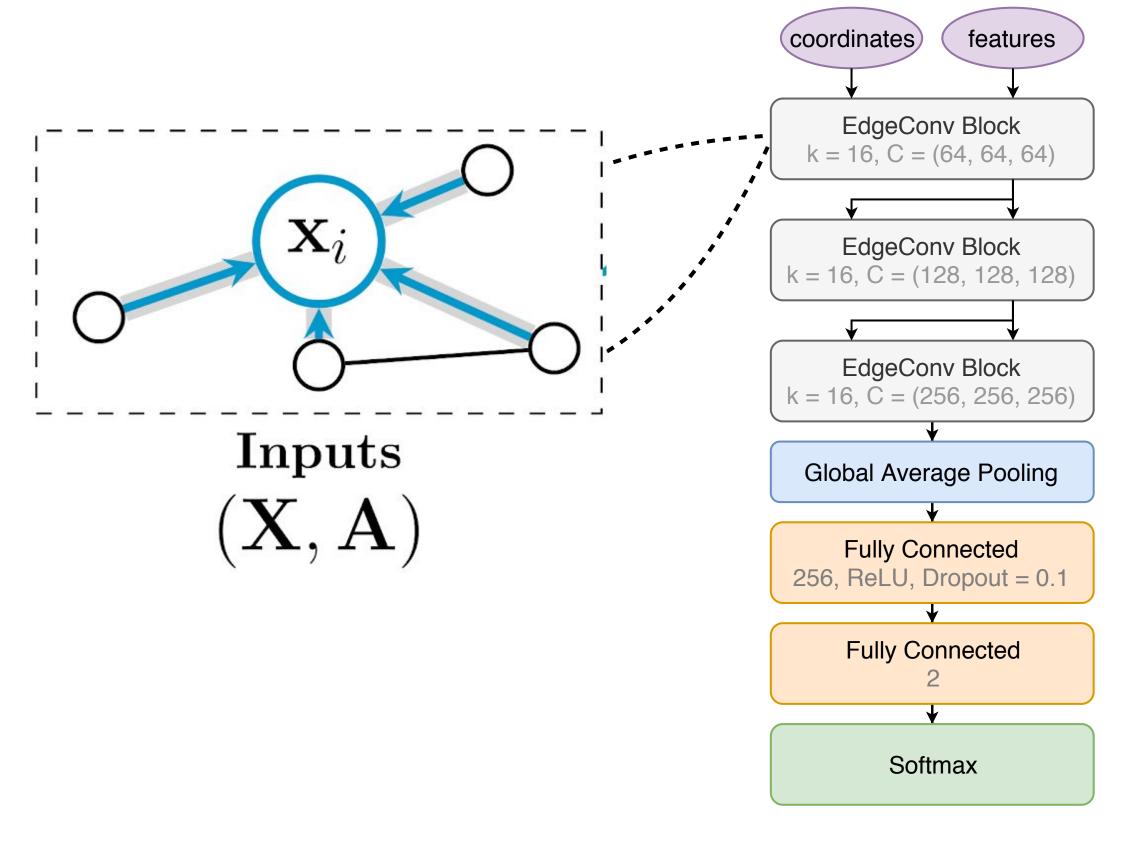


arXiv:1902.08570 CMS-DP-2020-002

ParticleNet, using "dynamic edge convolutions:" graph is constructed based on

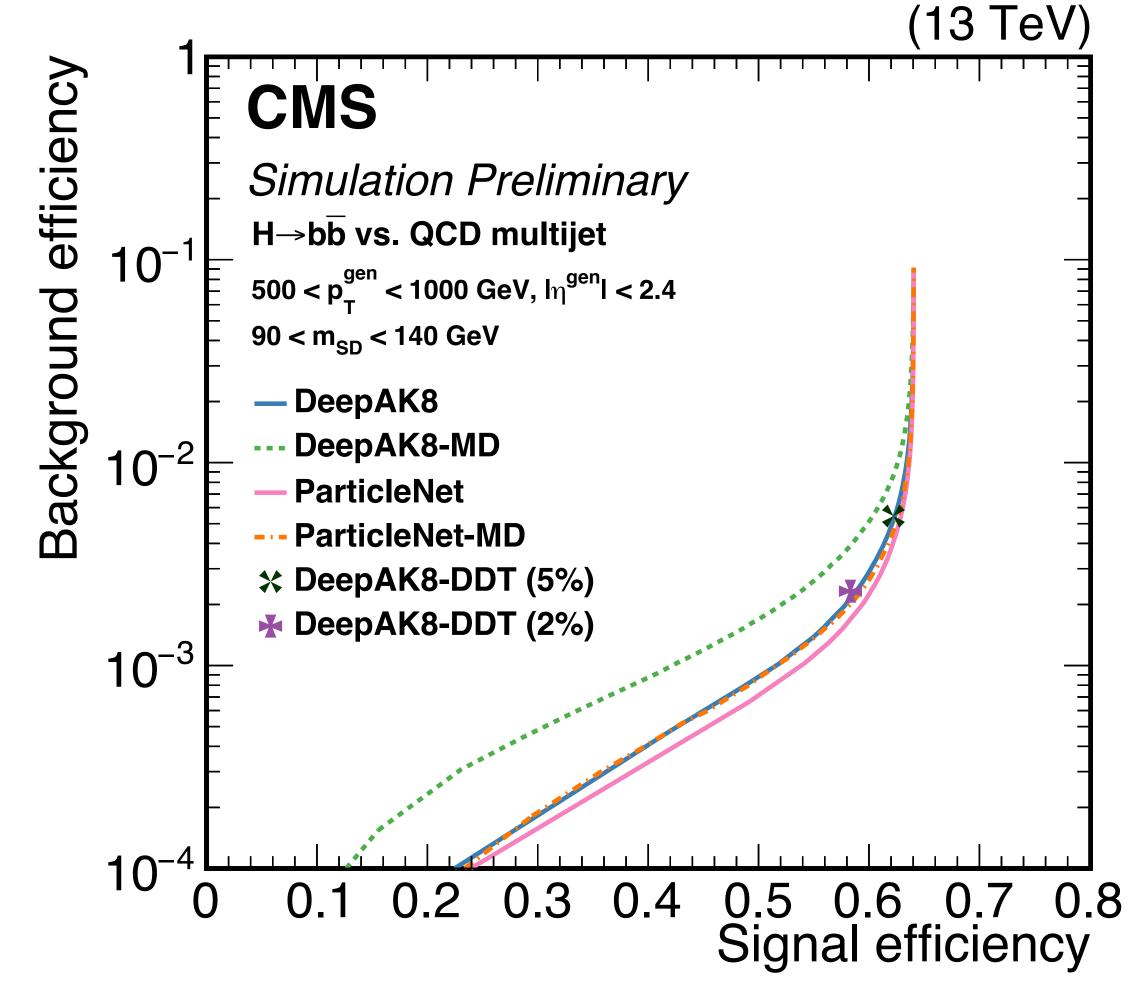
2	1	5

- "closeness" in an abstract "latent" space
- Identifies H(bb) with an efficiency of ~50% while rejecting 99.9% of background



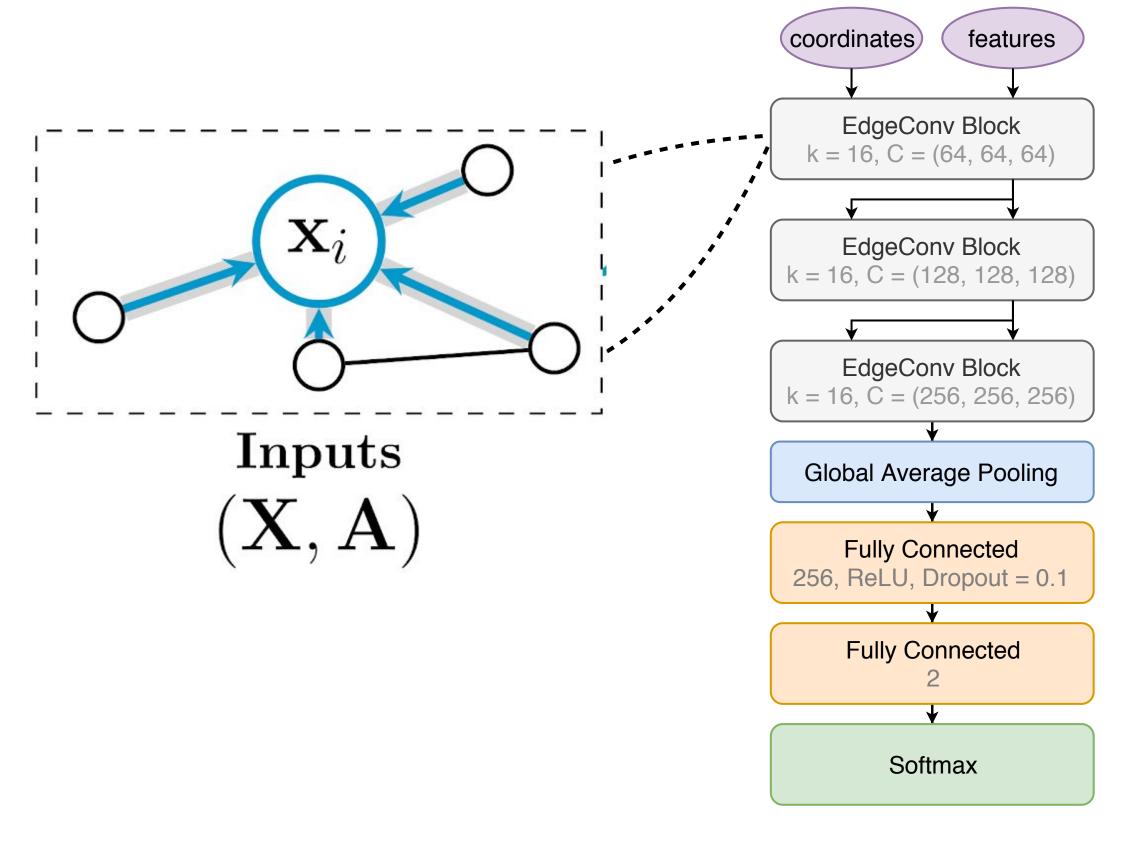
arXiv:1902.08570 CMS-DP-2020-002

ParticleNet, using "dynamic edge convolutions:" graph is constructed based on



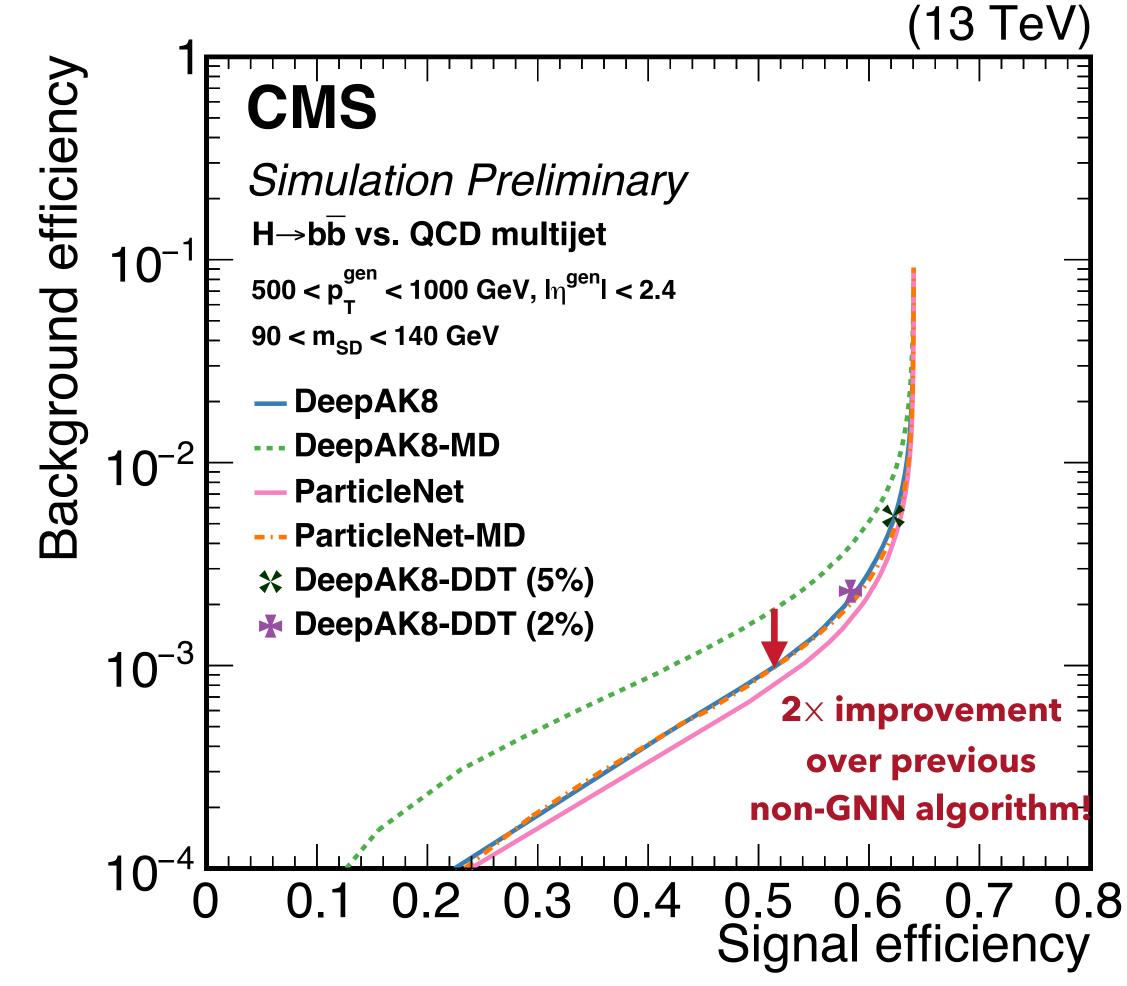
)	1	5

- "closeness" in an abstract "latent" space
- Identifies H(bb) with an efficiency of ~50% while rejecting 99.9% of background



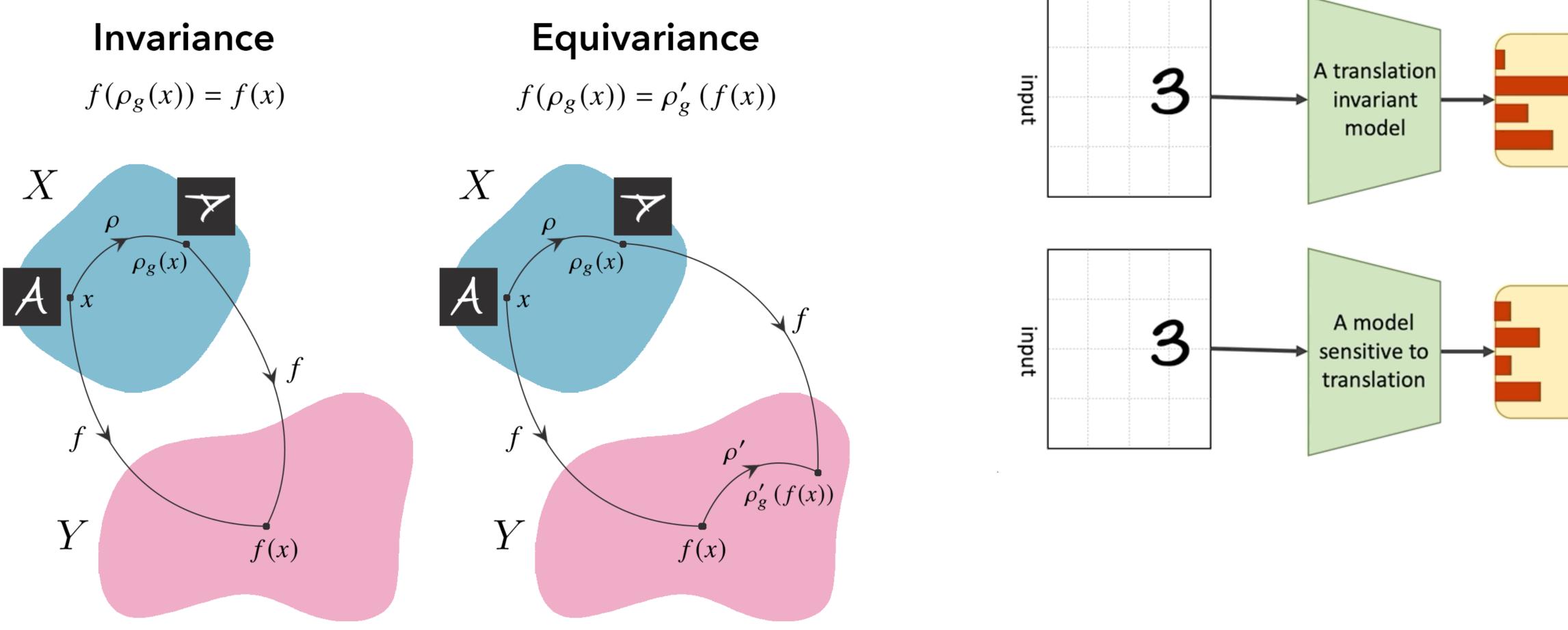
arXiv:1902.08570 CMS-DP-2020-002

ParticleNet, using "dynamic edge convolutions:" graph is constructed based on

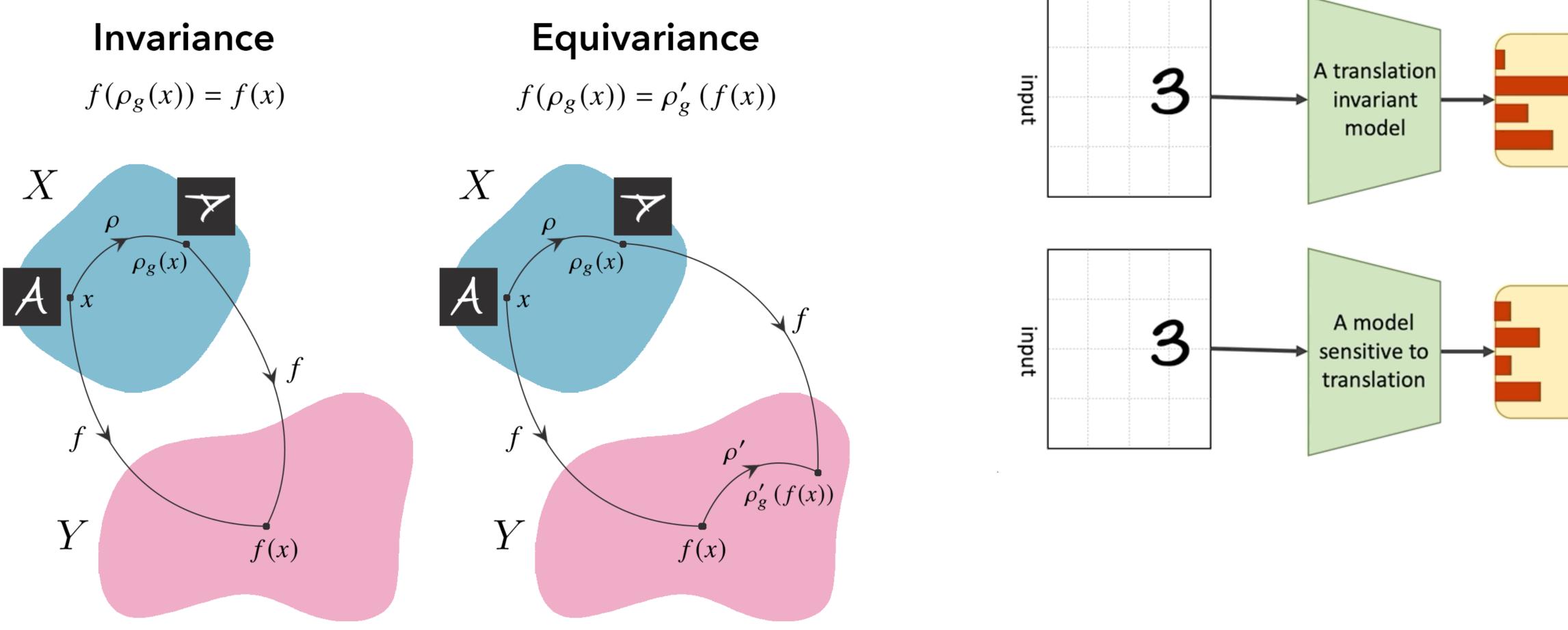


)	1	5

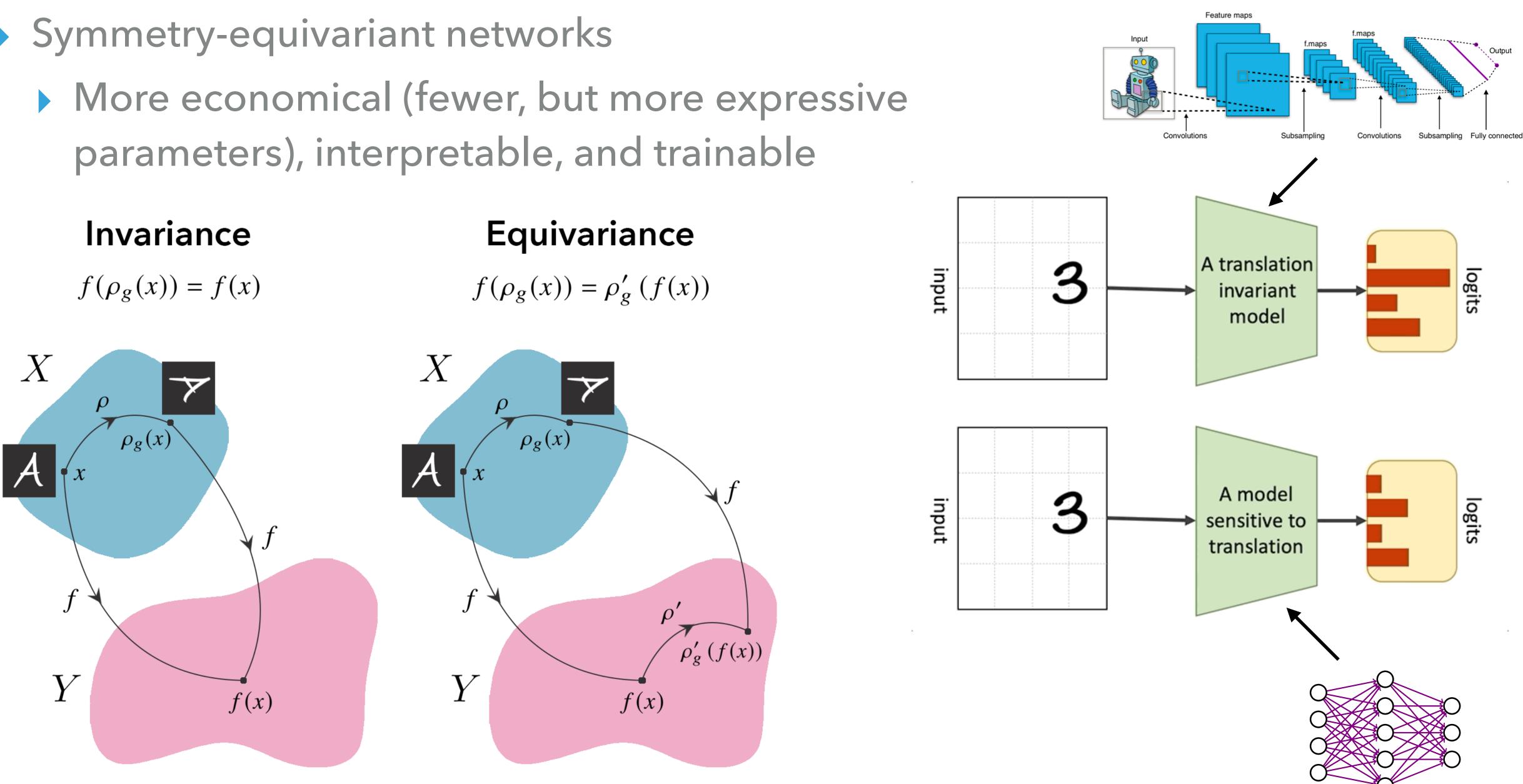
- Symmetry-equivariant networks
 - More economical (fewer, but more expressive) parameters), interpretable, and trainable



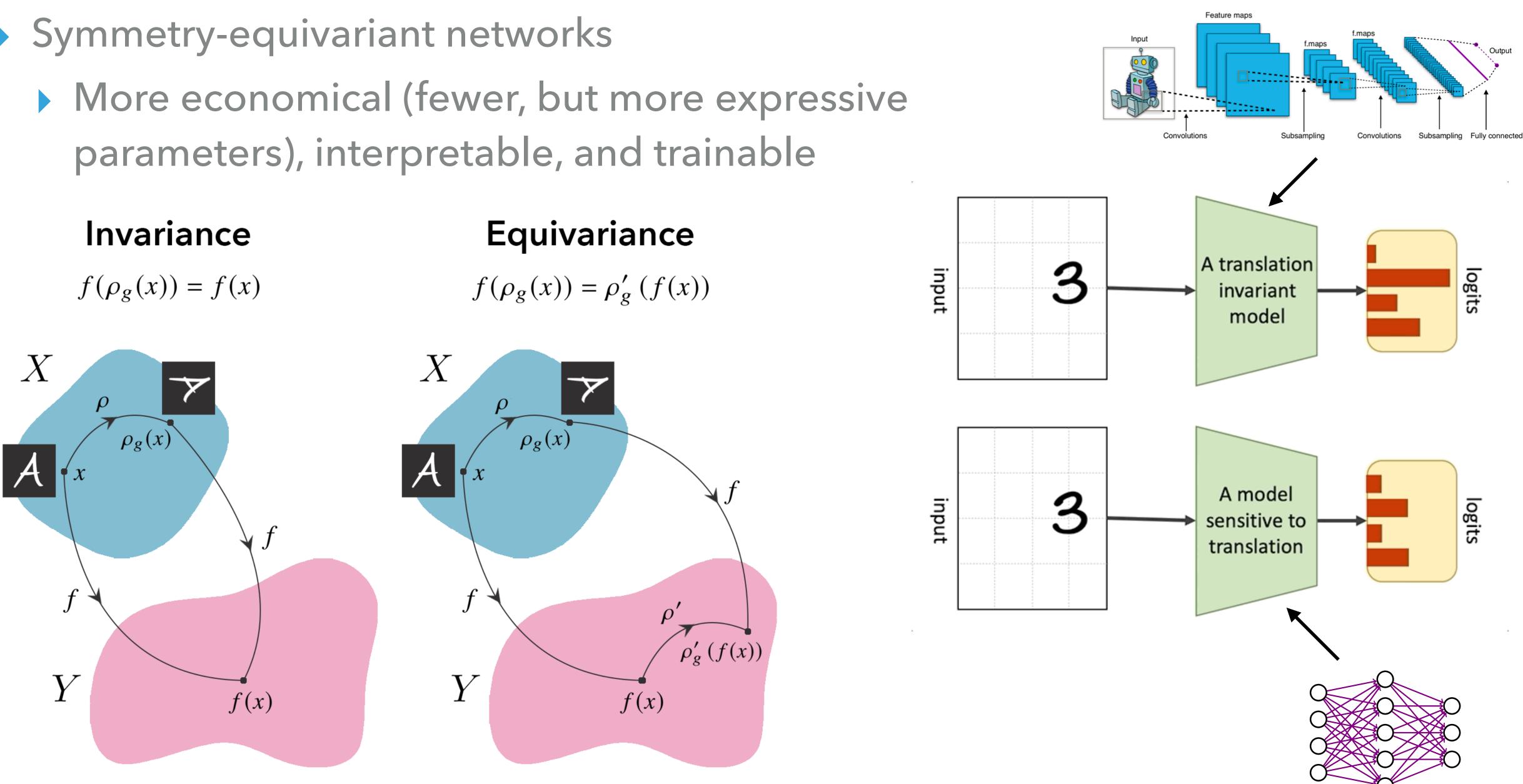
- Symmetry-equivariant networks
 - More economical (fewer, but more expressive) parameters), interpretable, and trainable



- Symmetry-equivariant networks



- Symmetry-equivariant networks



HOW DO WE ENFORCE LORENTZ SYMMETRY?

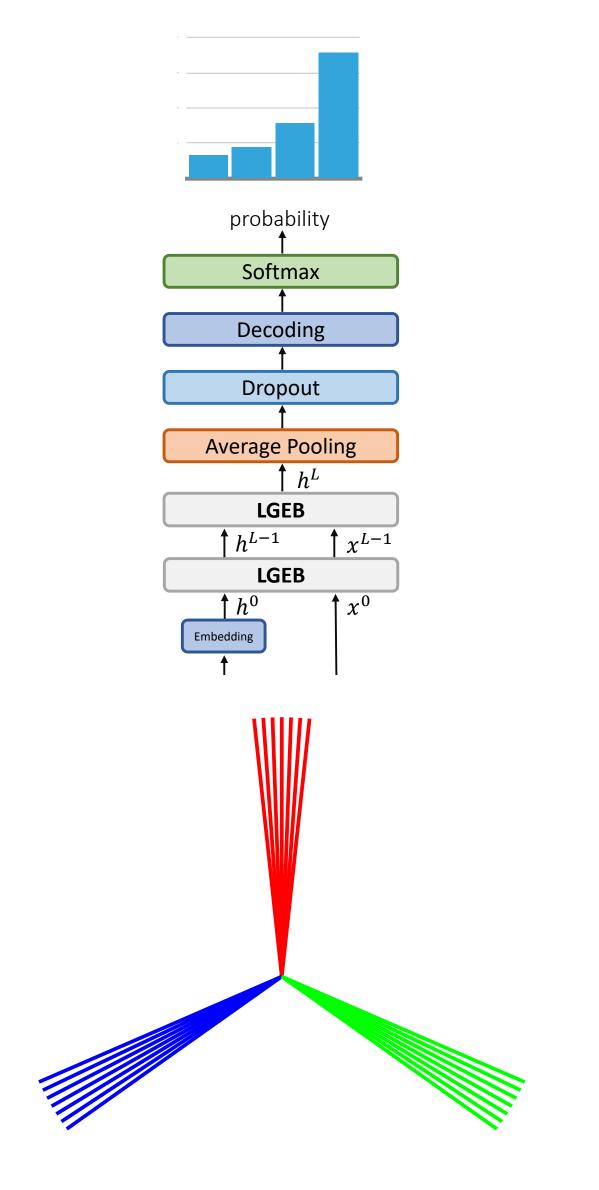
- Lorentz-invariant networks:
 - Boosting all particles into a new frame should give the same result
- Lorentz-equivariant networks:
 - Boosting all particles into a new frame should give an output that transforms the same way

WP: <u>arXiv:2201.08187</u> 17

HOW DO WE ENFORCE LORENTZ SYMMETRY?

- Lorentz-invariant networks:
 - Boosting all particles into a new frame should give the same result
- Lorentz-equivariant networks:
 - Boosting all particles into a new frame should give an output that transforms the same way

WP: <u>arXiv:2201.08187</u> 17

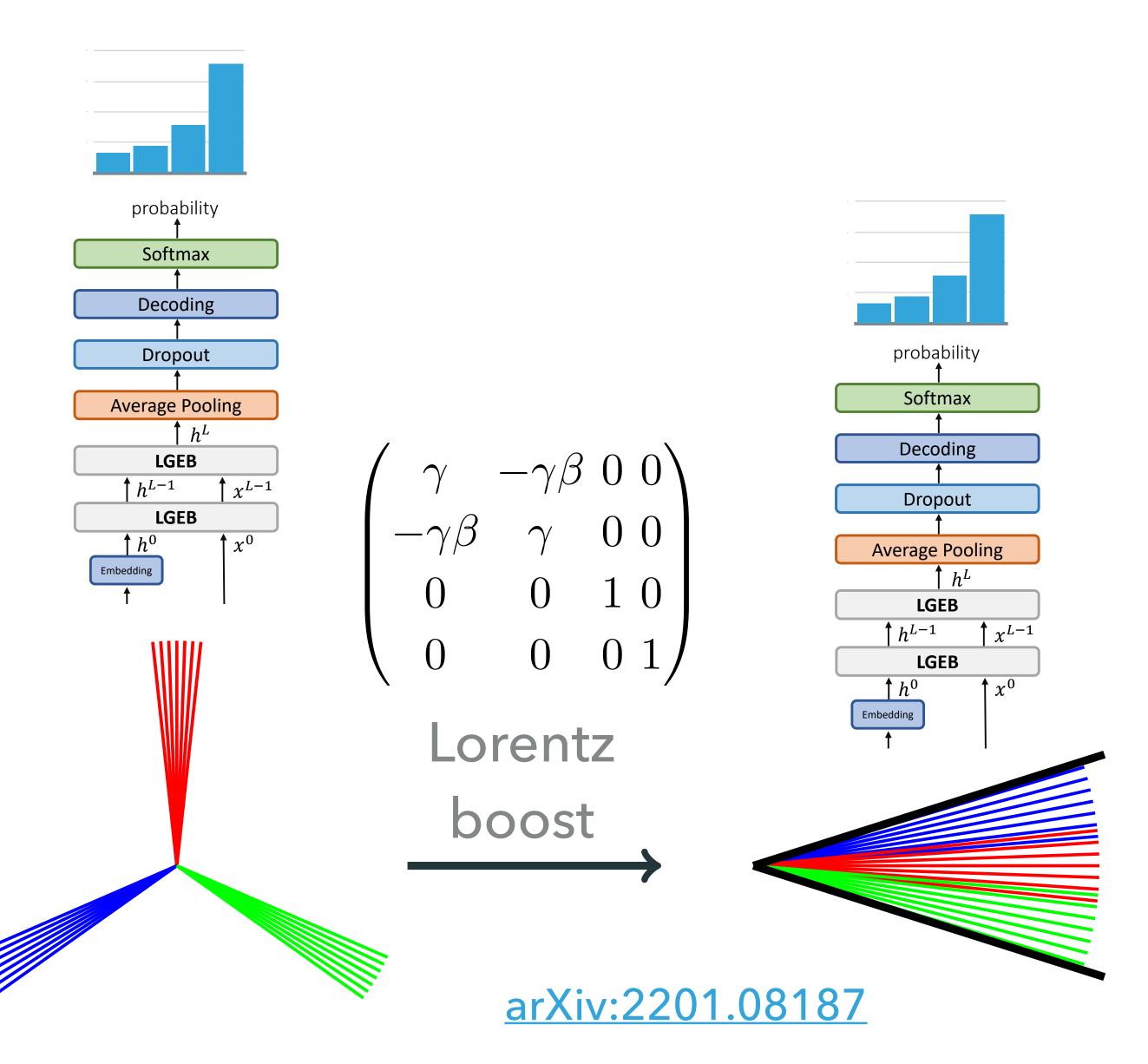


arXiv:2201.08187

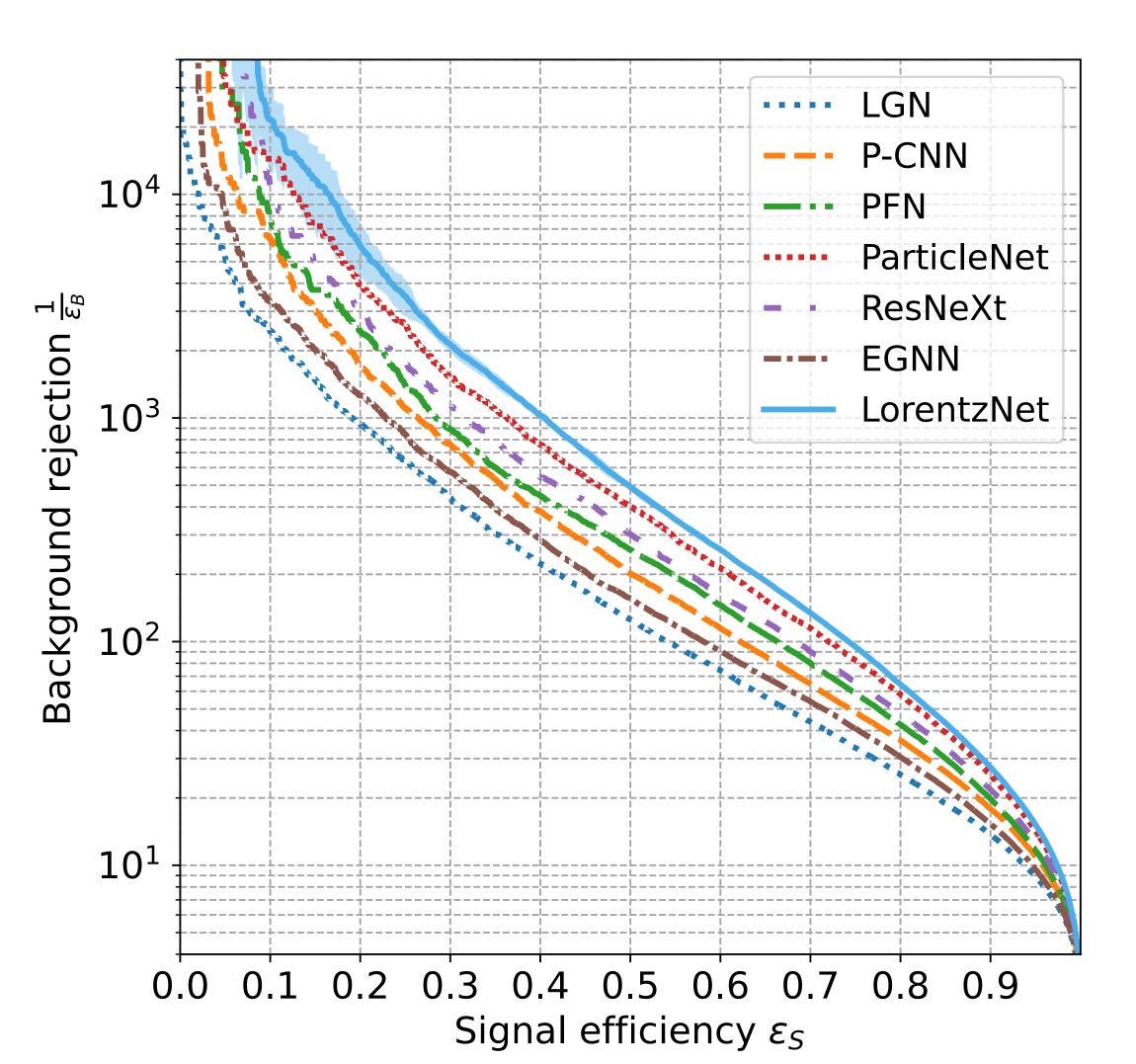
HOW DO WE ENFORCE LORENTZ SYMMETRY?

- Lorentz-invariant networks:
 - Boosting all particles into a new frame should give the same result
- Lorentz-equivariant networks:
 - Boosting all particles into a new frame should give an output that transforms the same way

WP: <u>arXiv:2201.08187</u> 17



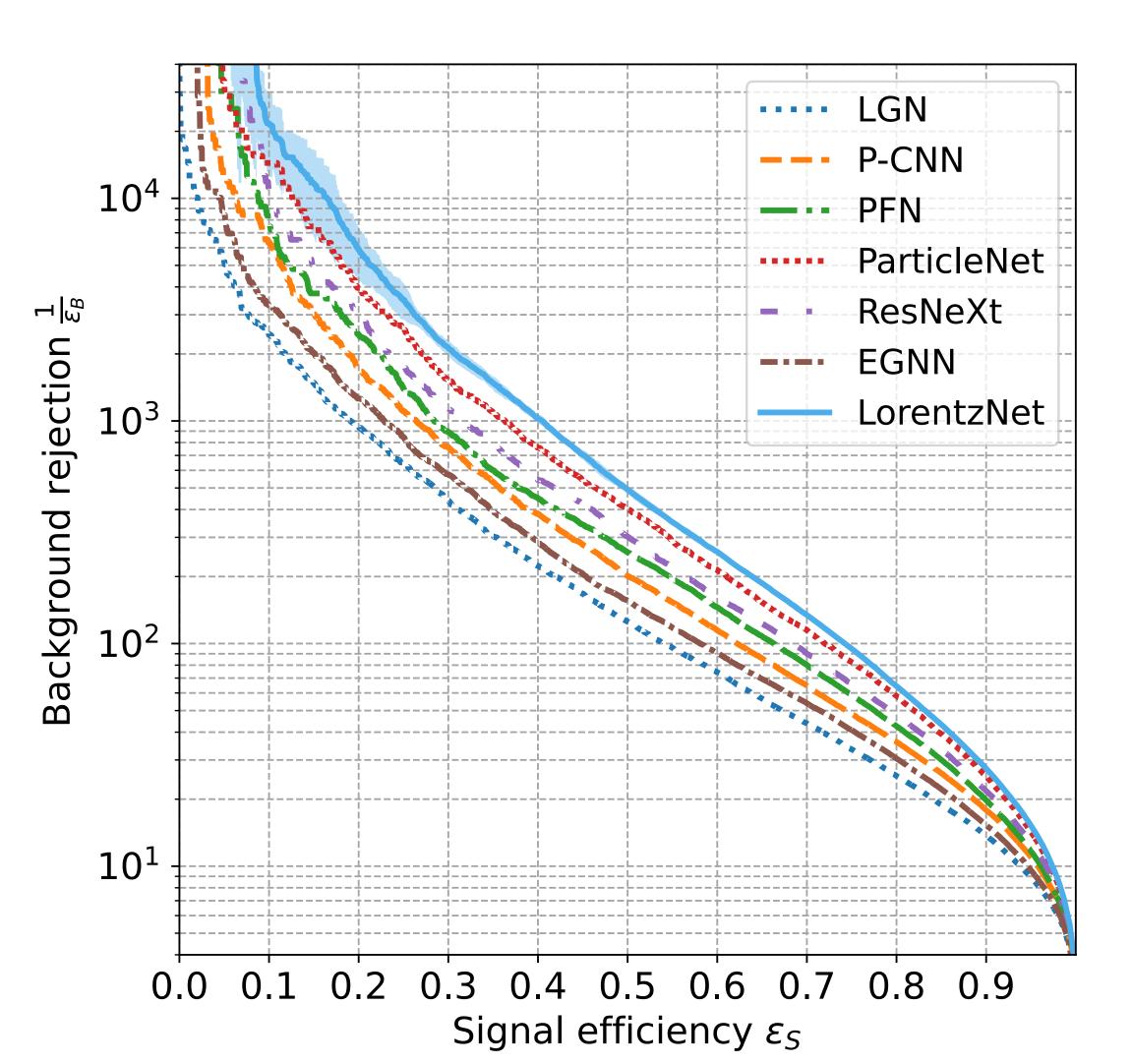
LORENTZNET PERFORMANCE



arXiv:2201.08187 18

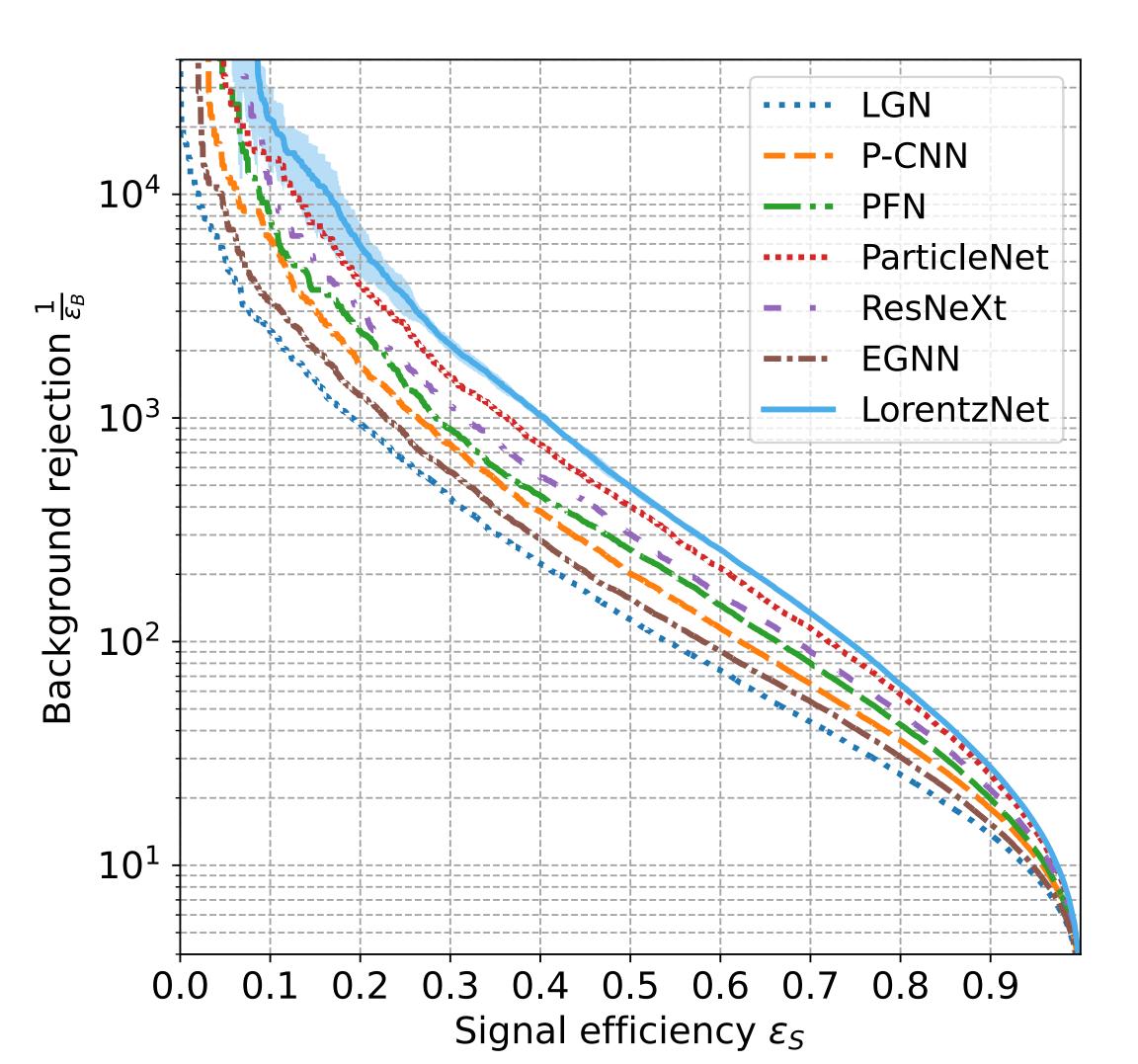
LORENTZNET PERFORMANCE

State-of-the-art performance for top quark tagging

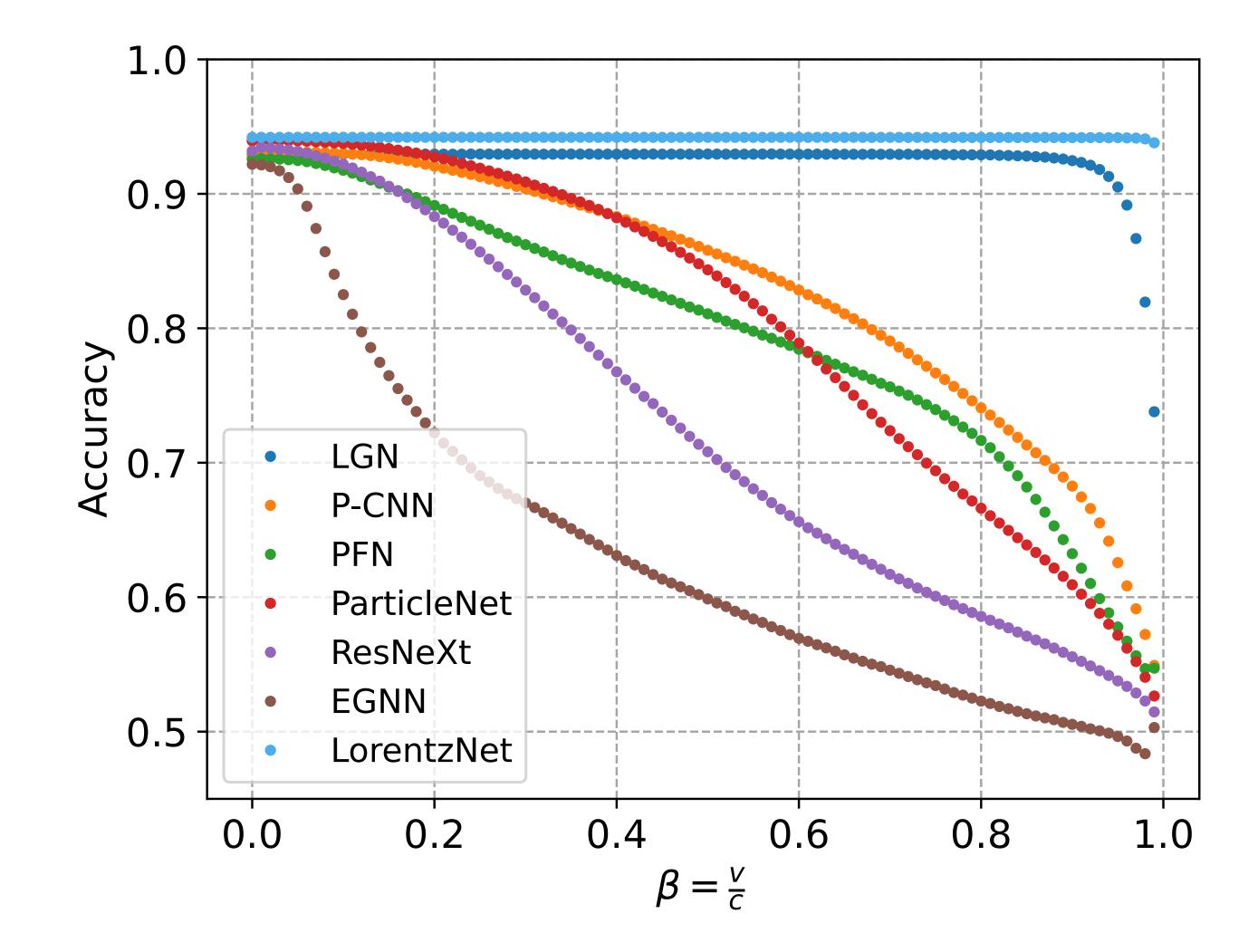


LORENTZNET PERFORMANCE

- State-of-the-art performance for top quark tagging
- Lorentz group invariance confirmed



arXiv:2201.08187 18



DATA REPRESENTATIONS & SYMMETRIES ANOMALY DETECTION II. GENERATIVE MODELING II. FAST INFERENCE VI. SUMMARY & OUTLOOK

Some searches (train signal versus data)

many new ideas!

Most searches ("train" with simulations) Train data versus background simulation

signal model independence

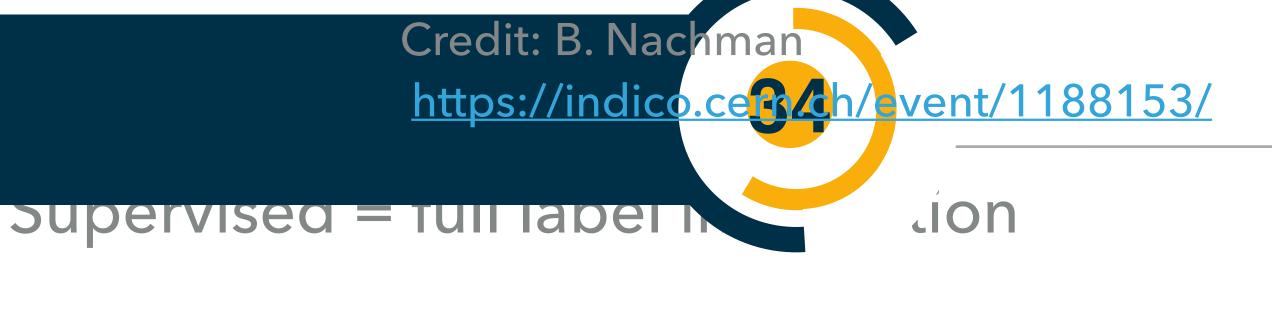
Credit: B. Nachman https://indico.cem/ch/event/1188153/

Some searches (train signal versus data)

many new ideas!

Most searches ("train" with simulations) Train data versus background simulation

signal model independence



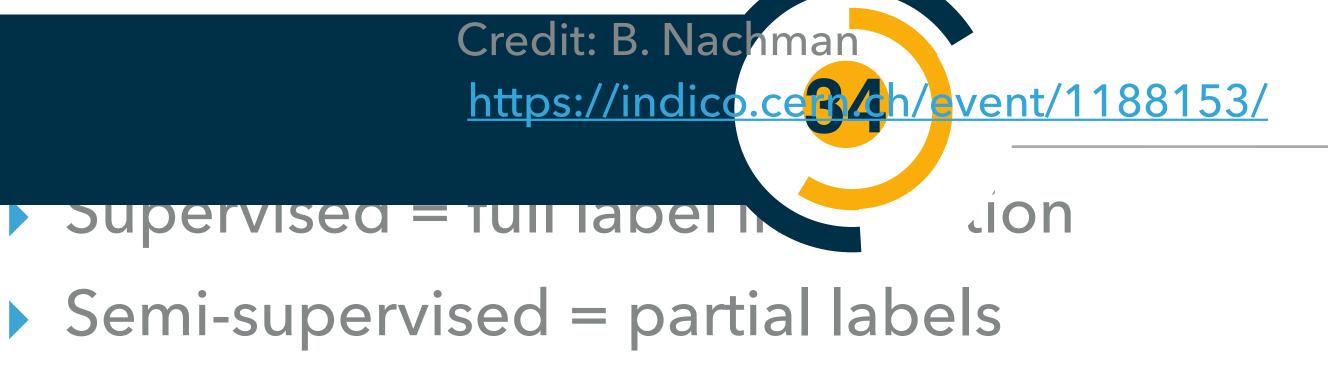
Some searches (train signal versus data)

many new ideas!

Most searches ("train" with simulations)

Train data versus background simulation

signal model independence



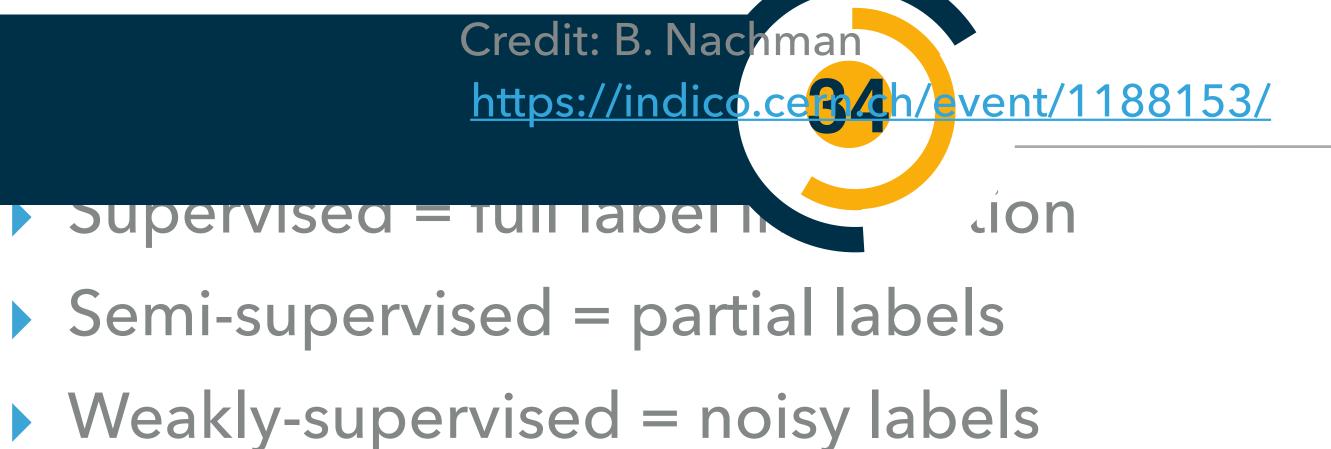
Some searches (train signal versus data)

many new ideas!

Most searches ("train" with simulations)

Train data versus background simulation

signal model independence



Some searches (train signal versus data)

many new ideas!

Most searches ("train" with simulations)

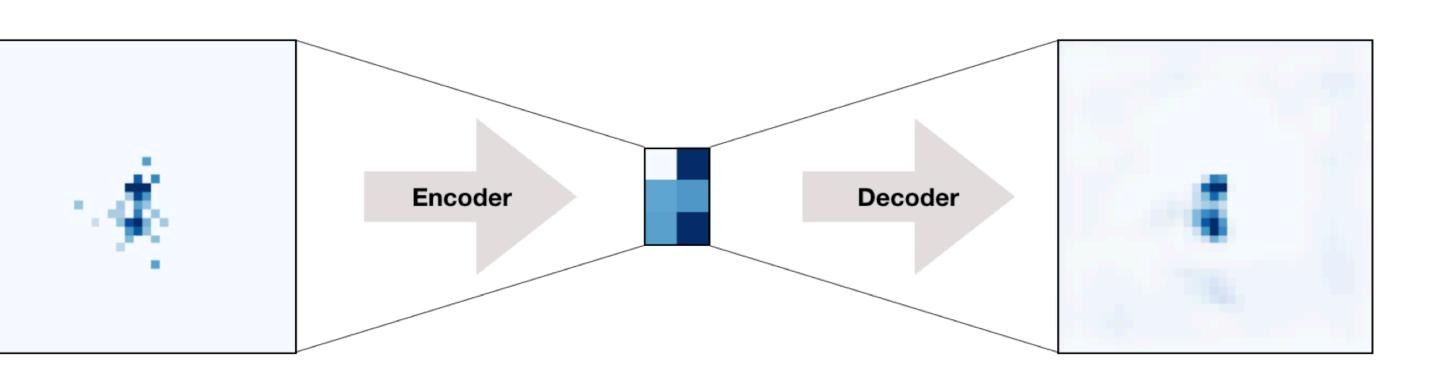
Train data versus background simulation

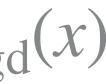
signal model independence

Credit: B. Nachman https://indico.cem/ch/event/1188153/

lion Supervised = Tull laber

- Semi-supervised = partial labels
- Weakly-supervised = noisy labels
- Unsupervised = no labels
 - Example: autoencoders compress data and then uncompress it
 - Assumption: if x is far from
 - Decoder(Encoder(x)), then x has low $p_{bkgd}(x)$





LHC OLYMPICS 2020

Challenge with "black box" signals run in 2020–2021 Plethora of new techniques

Unsupervised 3

- Anomalous Jet Identification via Variational Recurrent Neural Network 3.1
- Anomaly Detection with Density Estimation 3.2
- BuHuLaSpa: Bump Hunting in Latent Space 3.3
- GAN-AE and BumpHunter 3.4
- Gaussianizing Iterative Slicing (GIS): Unsupervised In-distribution Anomaly 3.5Detection through Conditional Density Estimation
- Latent Dirichlet Allocation 3.6
- Particle Graph Autoencoders 3.7
- Regularized Likelihoods 3.8
- UCluster: Unsupervised Clustering 3.9

Weakly Supervised 4

- CWoLa Hunting 4.1
- 4.2 CWoLa and Autoencoders: Comparing Weak- and Unsupervised methods for Resonant Anomaly Detection
- 4.3 Tag N' Train
- Simulation Assisted Likelihood-free Anomaly Detection 4.4
- 4.5Simulation-Assisted Decorrelation for Resonant Anomaly Detection

(Semi)-Supervised 5

- Deep Ensemble Anomaly Detection 5.1
- 5.2 Factorized Topic Modeling
- 5.3 QUAK: Quasi-Anomalous Knowledge for Anomaly Detection
- 5.4 Simple Supervised learning with LSTM layers

DATA REPRESENTATIONS & SYMMETRIES IL ANOMALY DETECTION III. GENERATIVE MODELING III. FAST INFERENCE VI. SUMMARY & OUTLOOK

Full Simulation

FULL DETECTOR SIMULATION

APPROXIMATE DETECTOR SIMULATION

HARD PROCESS GENERATION

Fast Simulation

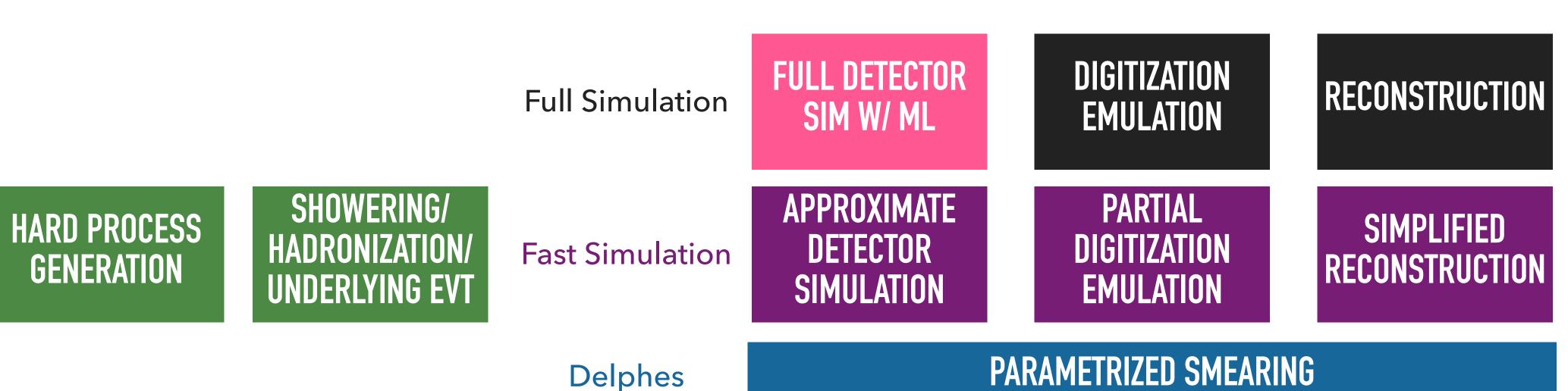
Delphes

ANALYSIS/ NTUPLING

PARAMETRIZED SMEARING

Several different strategies:

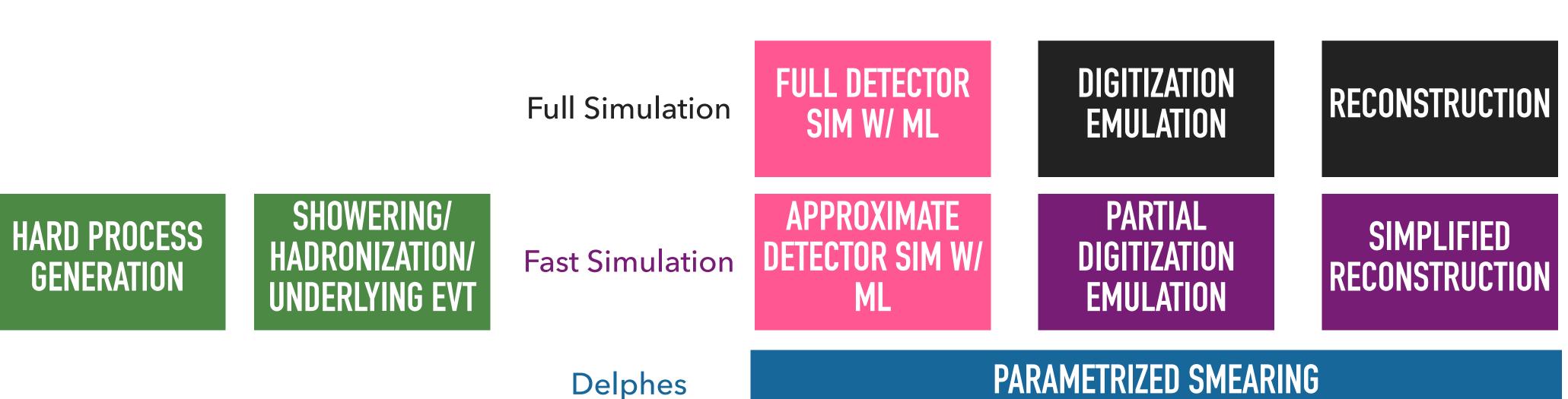
Replace (part of) FullSim: increase speed, preserve accuracy



ANALYSIS/ NTUPLING

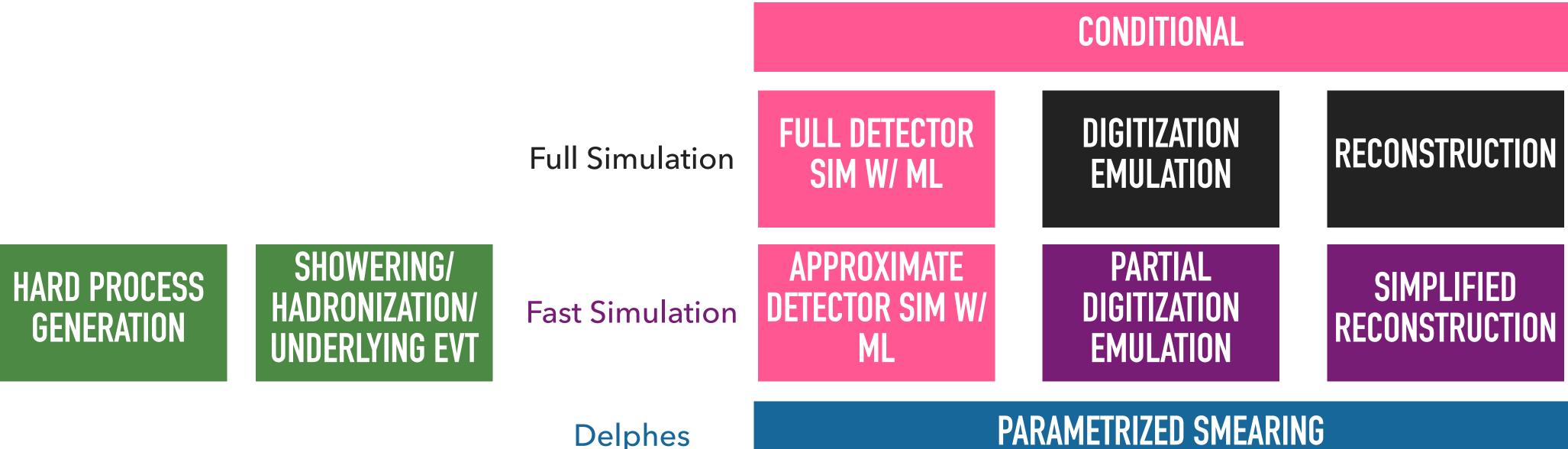
PARAMETRIZED SMEARING

- Several different strategies:
 - Replace (part of) FullSim: increase speed, preserve accuracy
 - Replace (part of) FastSim: maintain speed, increase accuracy



ANALYSIS/ NTUPLING

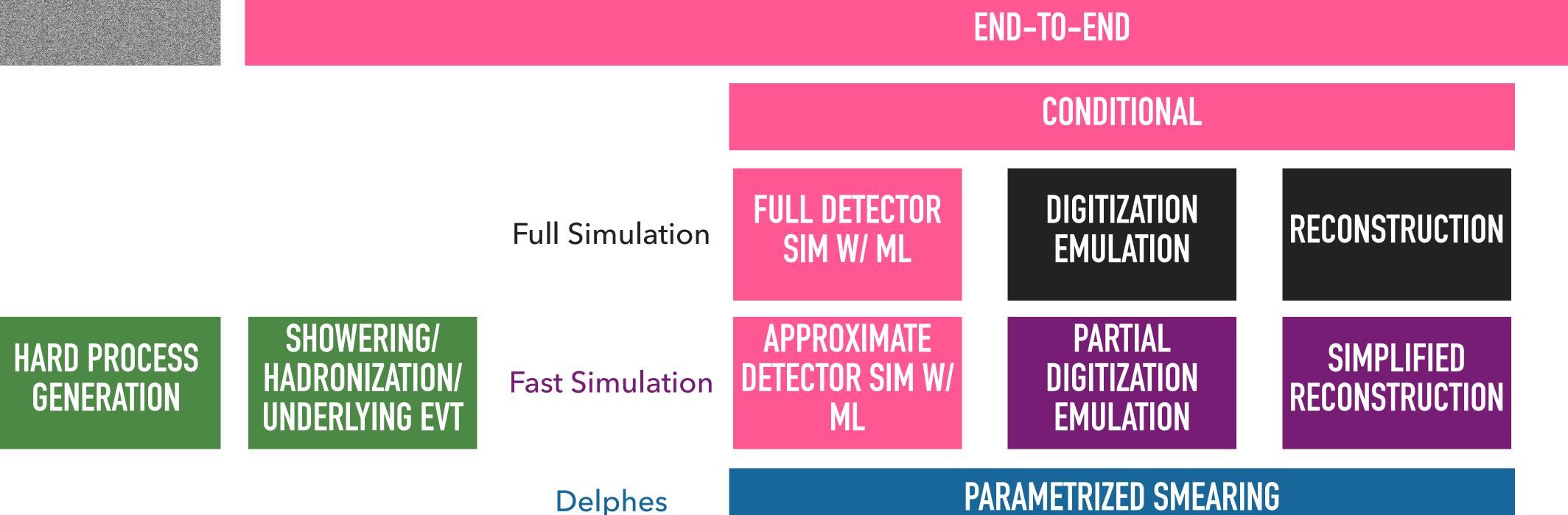
- Several different strategies:
 - Replace (part of) FullSim: increase speed, preserve accuracy
 - Replace (part of) FastSim: maintain speed, increase accuracy
 - Conditional: map generated → reconstructed events



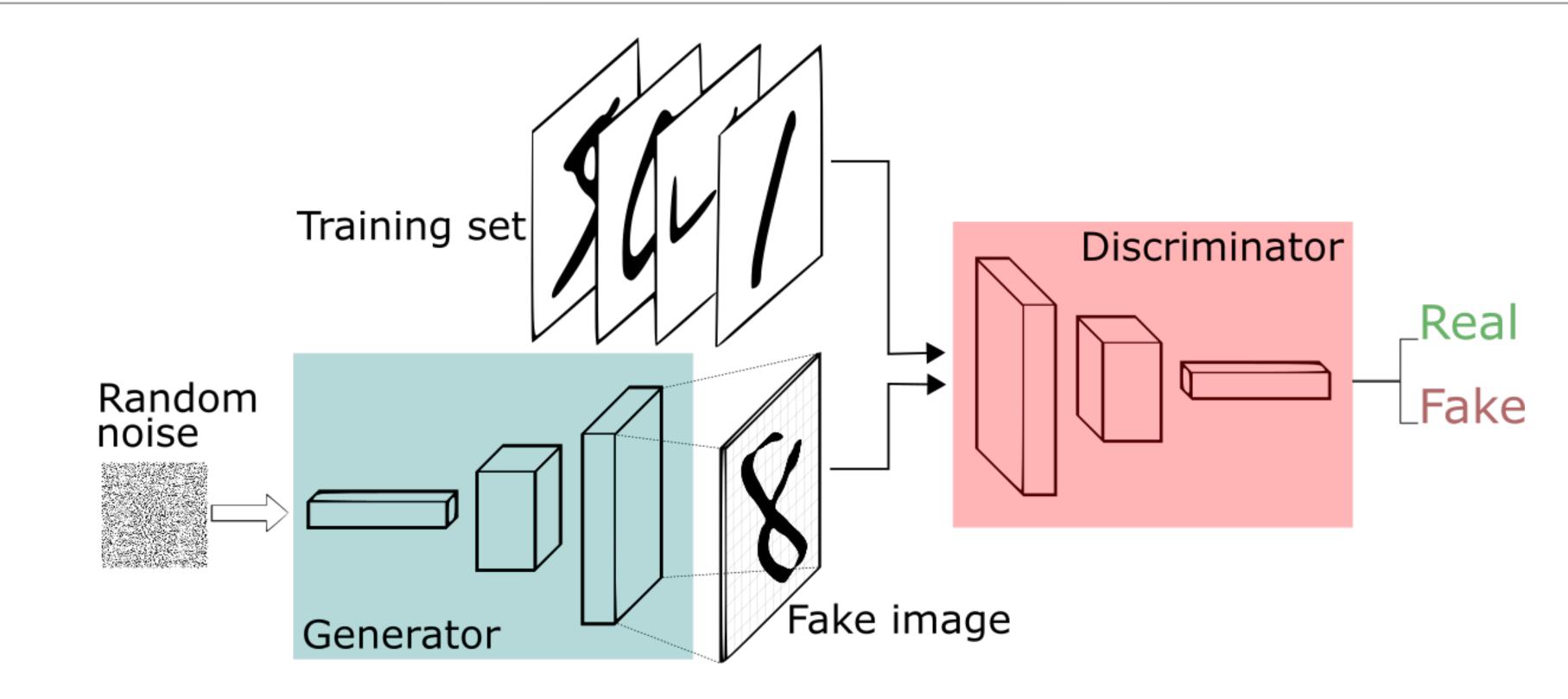
ANALYSIS/ NTUPLING

PARAMETRIZED SMEARING

- Several different strategies:
 - Replace (part of) FullSim: increase speed, preserve accuracy
 - Replace (part of) FastSim: maintain speed, increase accuracy
 - Conditional: map generated → reconstructed events
 - ► End-to-end: map random noise → reconstructed events directly



GENERATIVE ADVERSARIAL NETWORKS



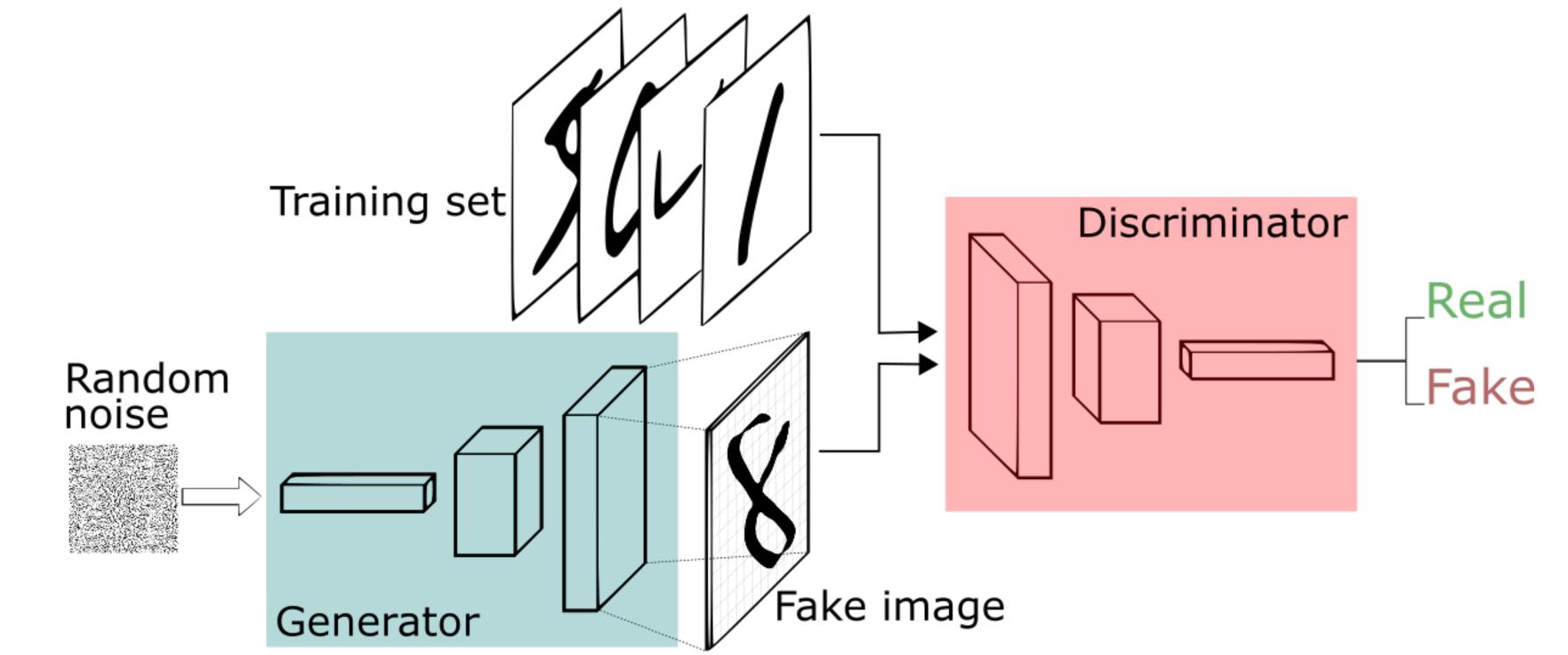
Train two neural networks in tandem:

one to generate realistic "fake" data

the other to discriminate "real" from "fake" data

arXiv:1406.2661 arXiv:1912.04958 24

GENERATIVE ADVERSARIAL NETWORKS



Train two neural networks in tandem:

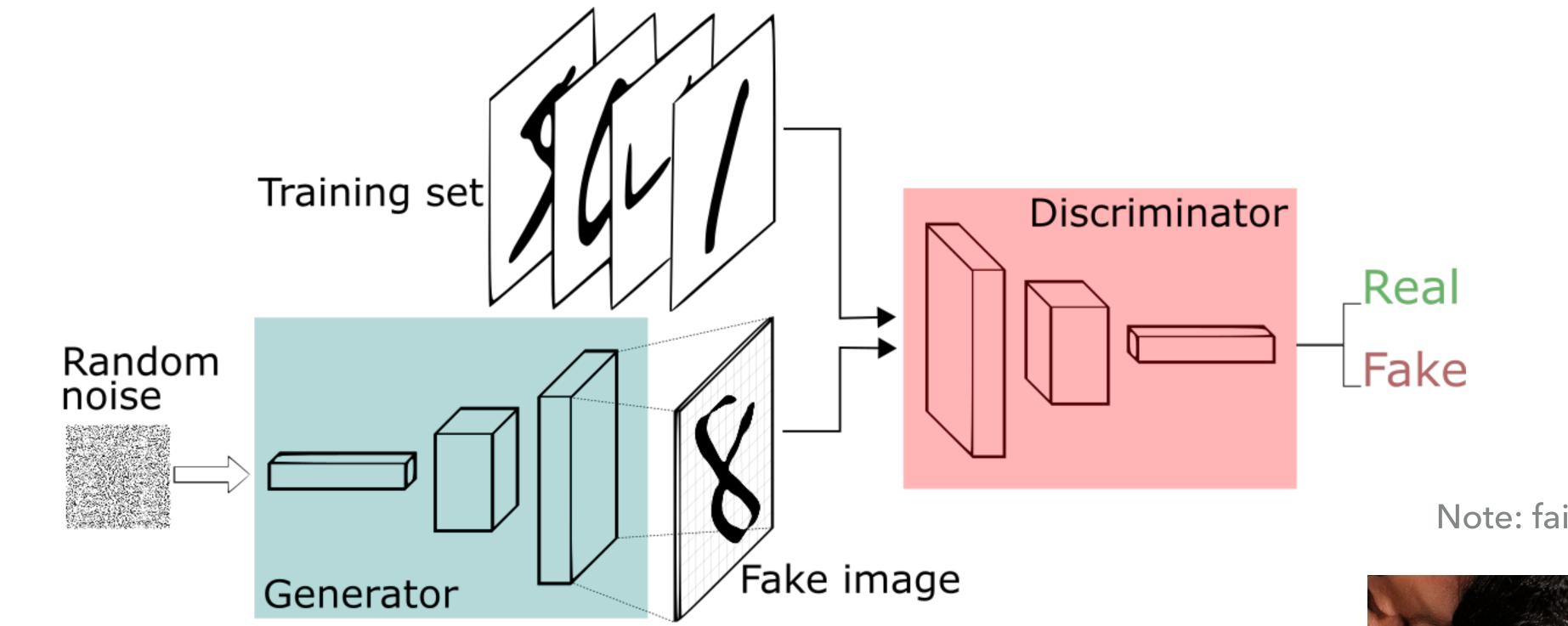
one to generate realistic "fake" data

the other to discriminate "real" from "fake" data

arXiv:1406.2661 arXiv:1912.04958 24

thispersondoesnotexist.com

GENERATIVE ADVERSARIAL NETWORKS



Train two neural networks in tandem:

one to generate realistic "fake" data

the other to discriminate "real" from "fake" data

arXiv:1406.2661 arXiv:1912.04958 24

Note: failure modes!

GENERATIVE AI EVALUATION METRICS

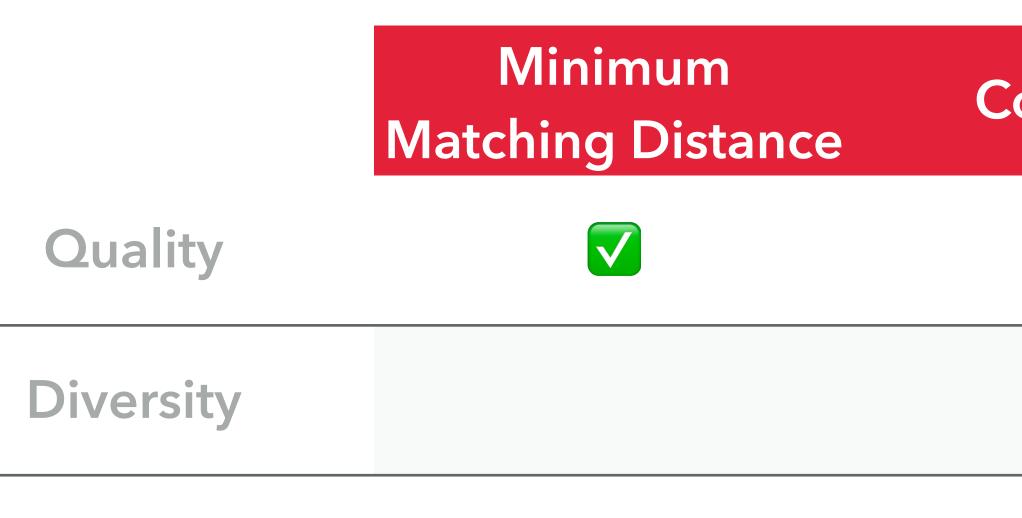
- Evaluation of generative models is in general difficult
- We want to evaluate quantitatively:
 - the quality of the data
 - the diversity of the data
 - ultimately, physics performance

arXiv:2012.00173 arXiv:2106.11535 25

To do so, we proposed with four physics- and computer-vision-inspired metrics

GENERATIVE AI EVALUATION METRICS

- Evaluation of generative models is in general difficult
- We want to evaluate quantitatively:
 - the quality of the data
 - the diversity of the data
 - ultimately, physics performance



Physics Perf.

arXiv:2012.00173 arXiv:2106.11535 25

To do so, we proposed with four physics- and computer-vision-inspired metrics

overage	Fréchet ParticleNet Distance	1-Wasserssteir Distance (W ₁)

GENERATIVE AI EVALUATION METRICS

On the Evaluation of Generative Models in High Energy Physics Evaluation

- We want
 - the qu
 - the di
 - ultima
- To do so

Raghav Kansal,^{*} Anni Li, and Javier Duarte University of California, San Diego

Nadezda Chernyavskaya, Maurizio Pierini European Center for Nuclear Research (CERN)

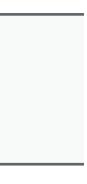
Breno Orzari, Thiago Tomei Universidade Estadual Paulista, São Paulo/SP (Dated: November 16, 2022)

There has been a recent explosion in research into machine-learning- (ML-) based generative modeling to tackle computational challenges for simulations in high energy physics (HEP). In order to use such alternative simulators in practice, we need a well defined metrics to compare different generative models and evaluate their discrepancy from the true distributions. We present the first systematic review and investigation into evaluation metrics and their sensitivity to failure models of generative models, using the framework of two-sample goodness-of-fit testing, and their relevance **Qualit** and viability for HEP. Inspired by previous work in both physics and computer vision, we propose two new metrics, the Fréchet and Kernel Physics Distances (FPD and KPD), and perform a variety of experiments measuring their performance on simple Gaussian-distributed, and simulated high **Diversi** energy jet datasets. We find FPD, in particular, to be the most sensitive metric to all alternative jet distributions tested and recommend its adoption, along with KPD and Wasserstein distances between individual feature distributions, for evaluating generative models in HEP. We finally demonstrate the efficacy of these proposed metrics in evaluating and comparing a novel attention-based **Physics** generative model, GAPT, to the state-of-the-art MPGAN jet simulation model.

New print on arXiv this week!

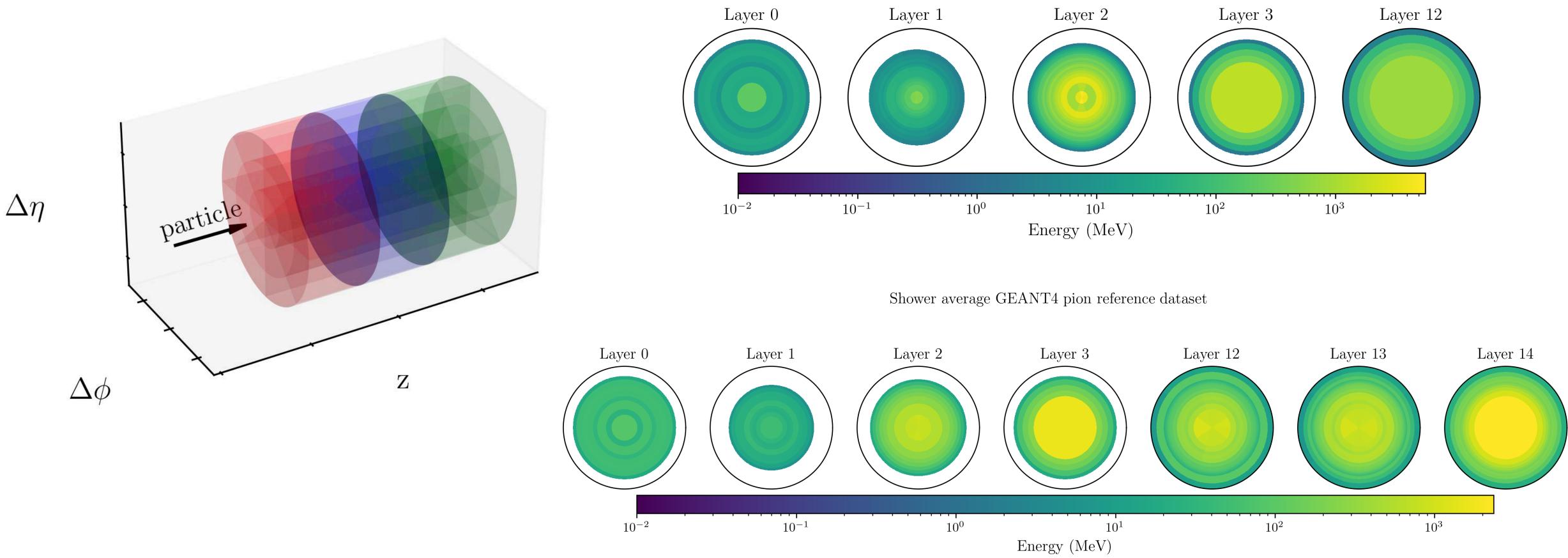
arXiv:2012.00173 arXiv:2106.11535 25

etrics



CALO CHALLENGE

- event/1159913/



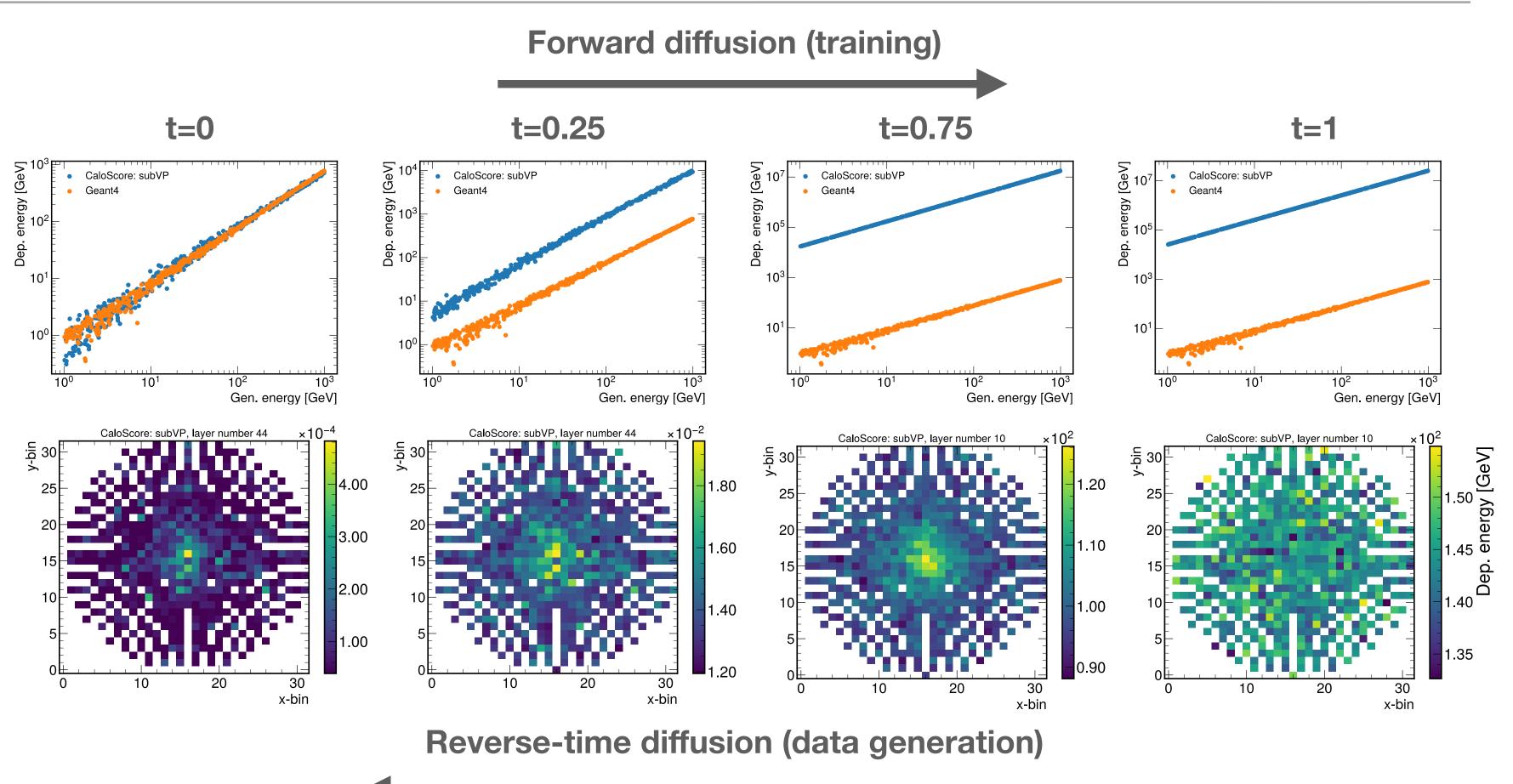
calochallenge.github.io 26

Ongoing challenge for generative modeling of calorimeter showers in HEP! Many new approaches presented at ML4Jets 2022: <u>https://indico.cern.ch/</u>

Shower average GEANT4 photon reference dataset

DIFFUSION MODELS IN HEP

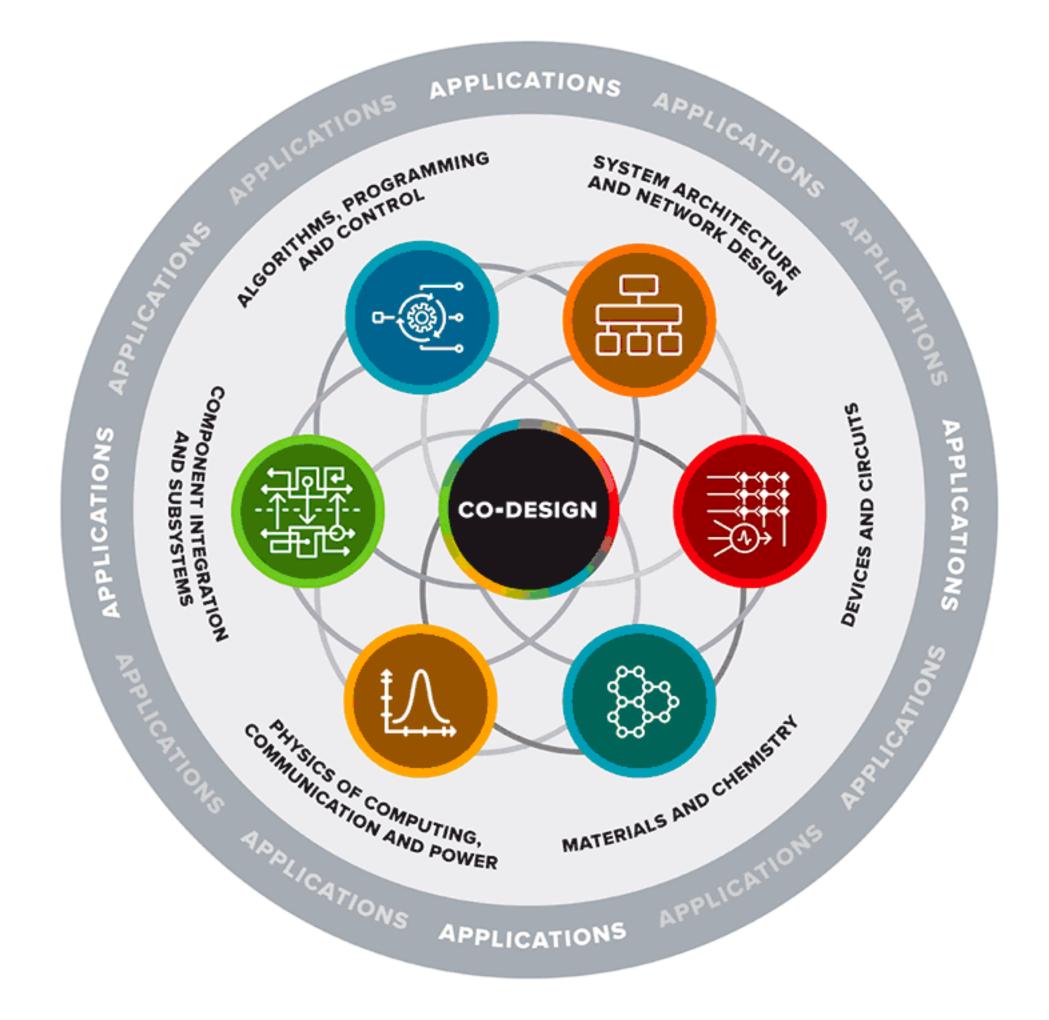
- Diffusion models have very recently dethroned GANs for natural images
- Generative model is trained using a diffusion process that slowly perturbs the data by adding noise – model learns to denoise
- Generation of new samples by reversing the diffusion process



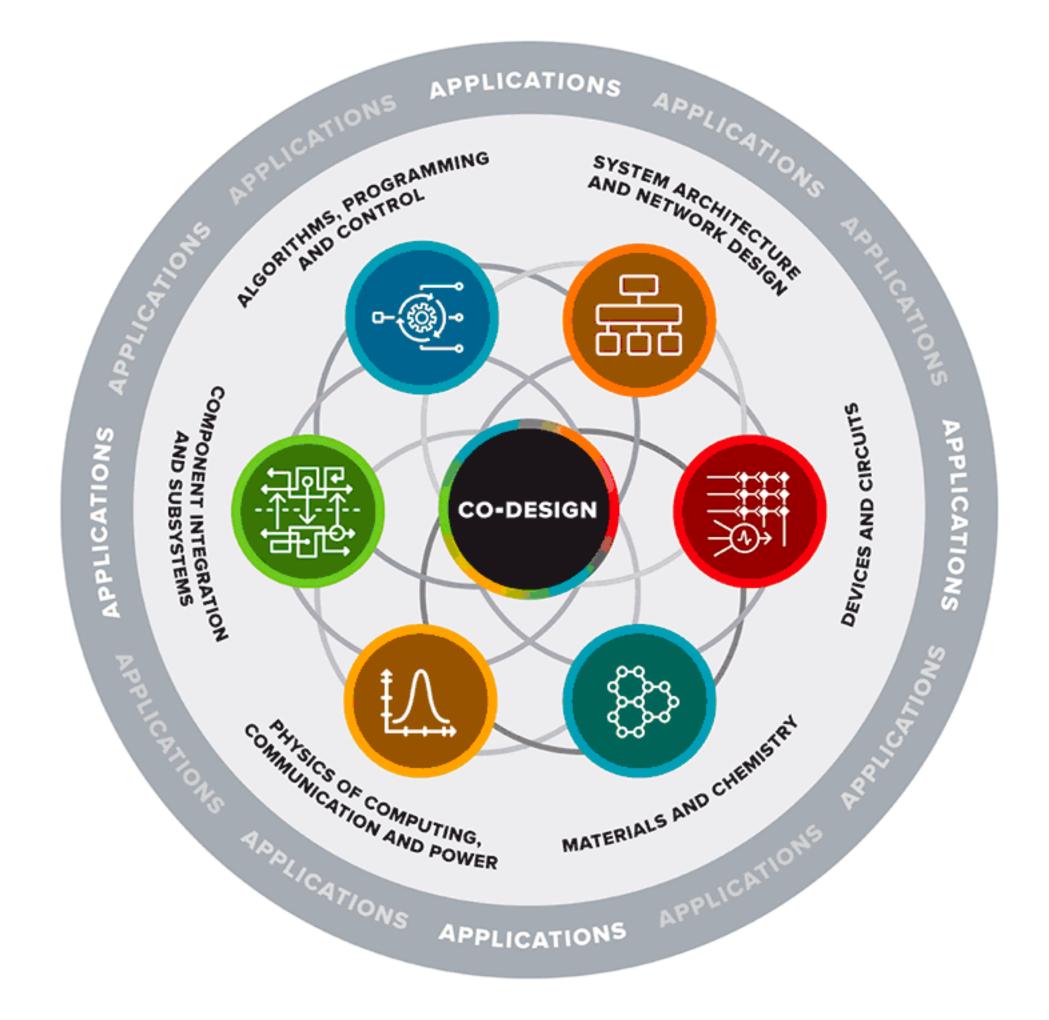
arXiv:2011.13456 arXiv:2206.11898 27

Distribution of deposited energies for generated particle energies (top) and the energy deposition in a single layer of a calorimeter (bottom) vs time step

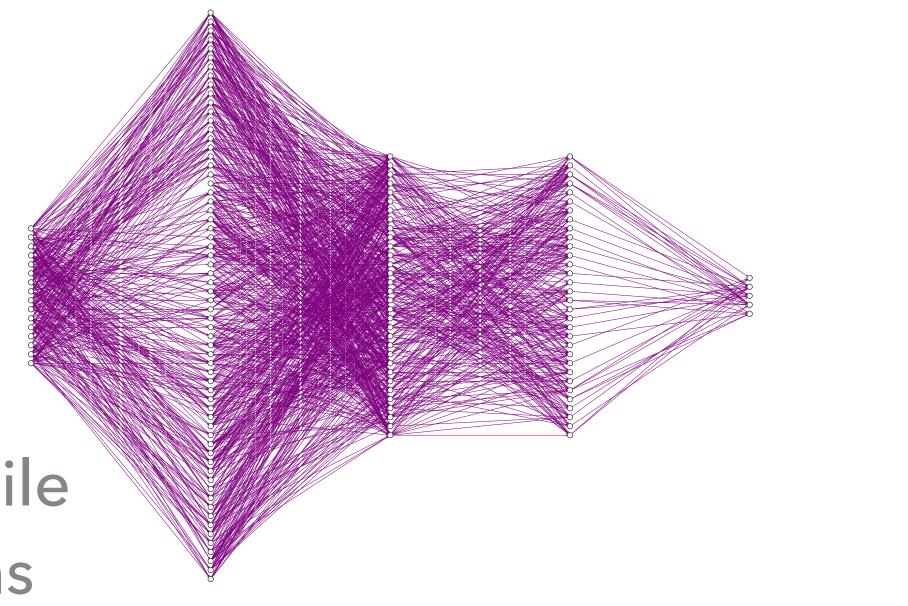
DATA REPRESENTATIONS & SYMMETRIES IL ANOMALY DETECTION II. GENERATIVE MODELING III. FAST INFERENCE VI. SUMMARY & OUTLOOK



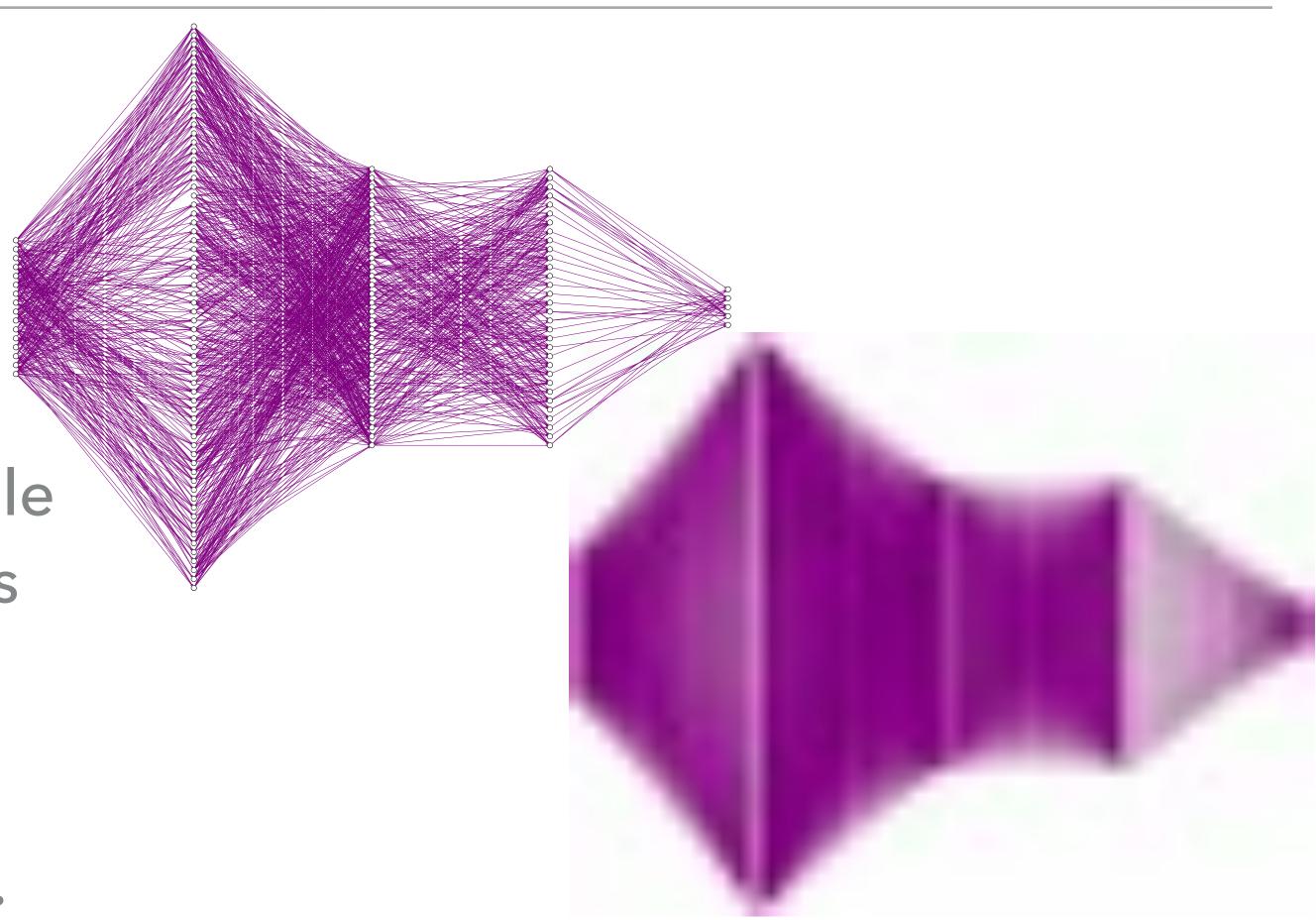
Codesign: intrinsic development
 loop between algorithm design,
 training, and implementation



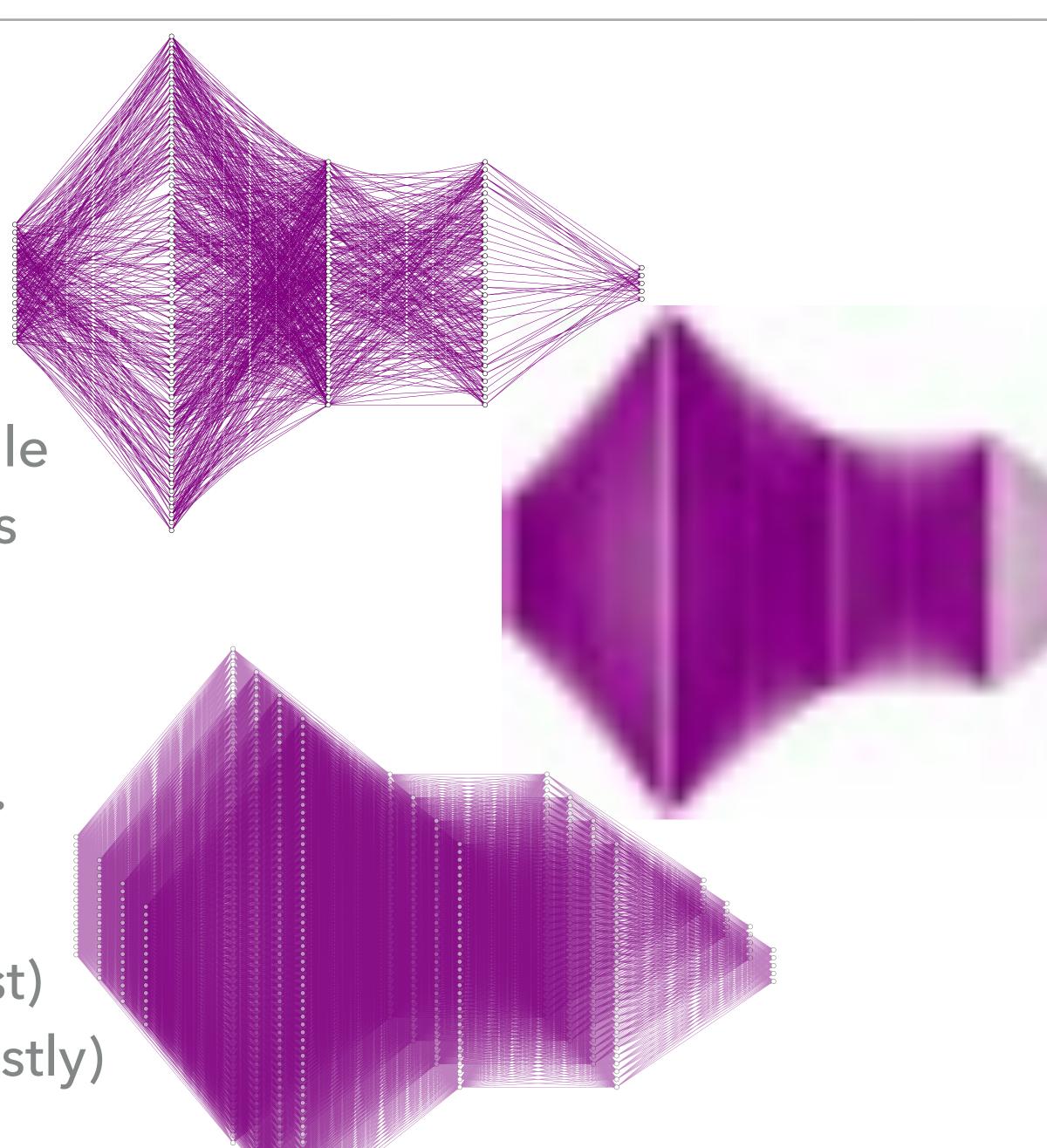
- Codesign: intrinsic development
 loop between algorithm design,
 training, and implementation
- Compression
 - Maintain high performance while removing redundant operations



- Codesign: intrinsic development
 loop between algorithm design,
 training, and implementation
- Compression
 - Maintain high performance while removing redundant operations
- Quantization
 - Reduce precision from 32-bit floating point to 16-bit, 8-bit, ...

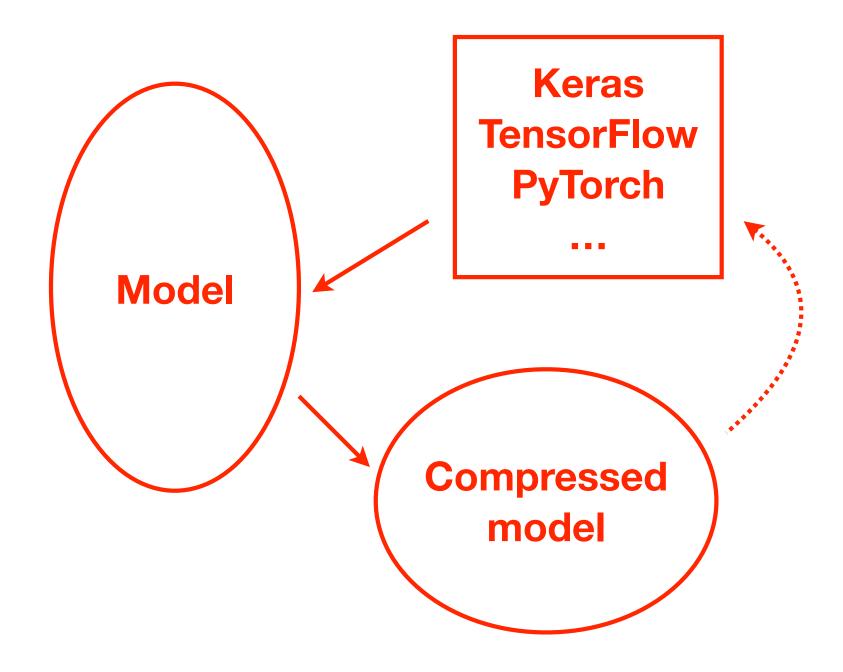


- Codesign: intrinsic development
 loop between algorithm design,
 training, and implementation
- Compression
 - Maintain high performance while removing redundant operations
- Quantization
 - Reduce precision from 32-bit floating point to 16-bit, 8-bit, ...
- Parallelization
 - Balance parallelization (how fast)
 with resources needed (how costly)



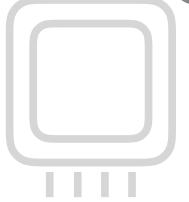
DESIGN EXPLORATION WITH HLS4ML

hls4ml for scientists or ML experts to translate ML algorithms into RTL firmware

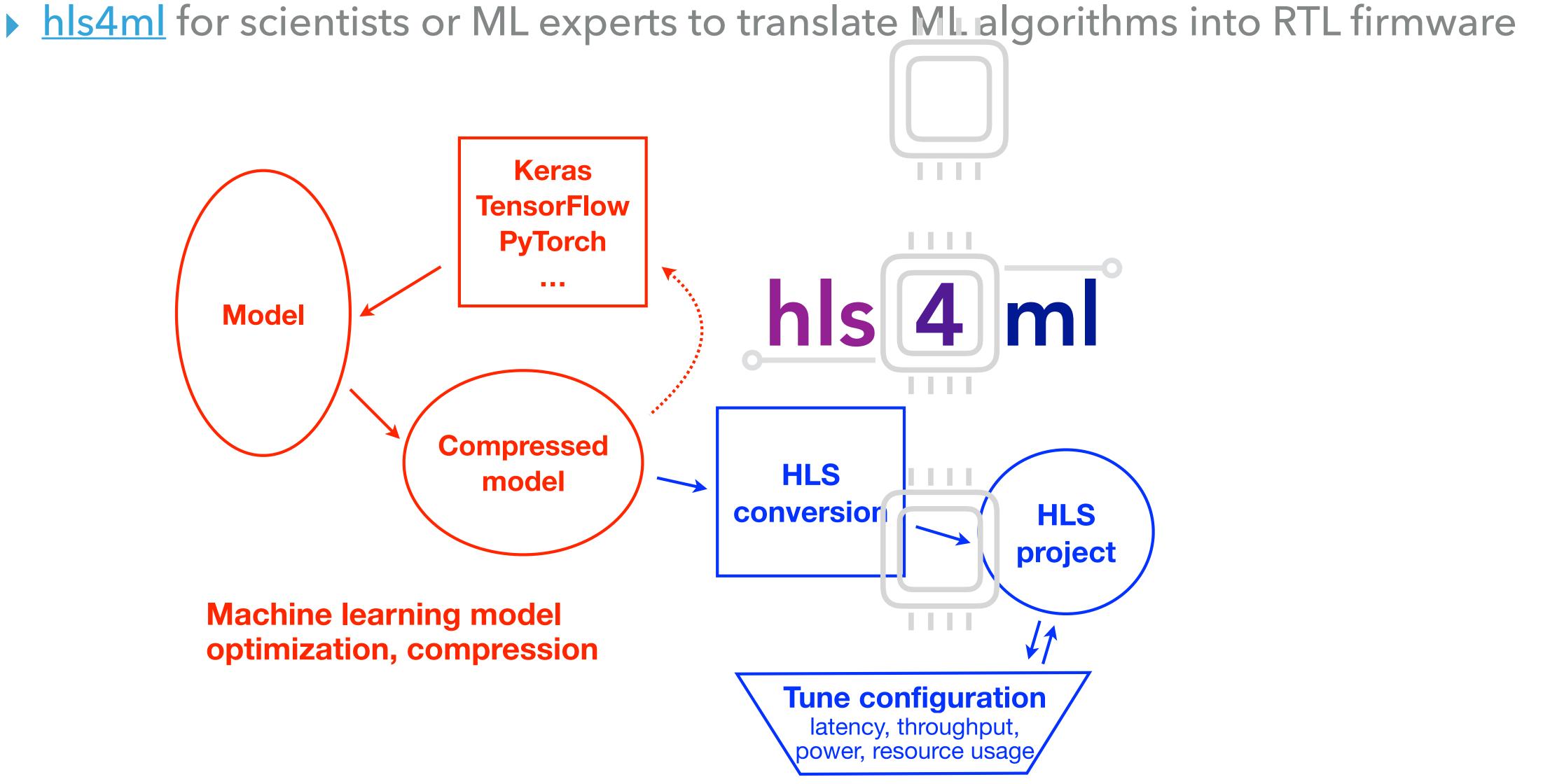


Machine learning model optimization, compression

<u>J. Instrum. 13, P07027 (2018)</u>30

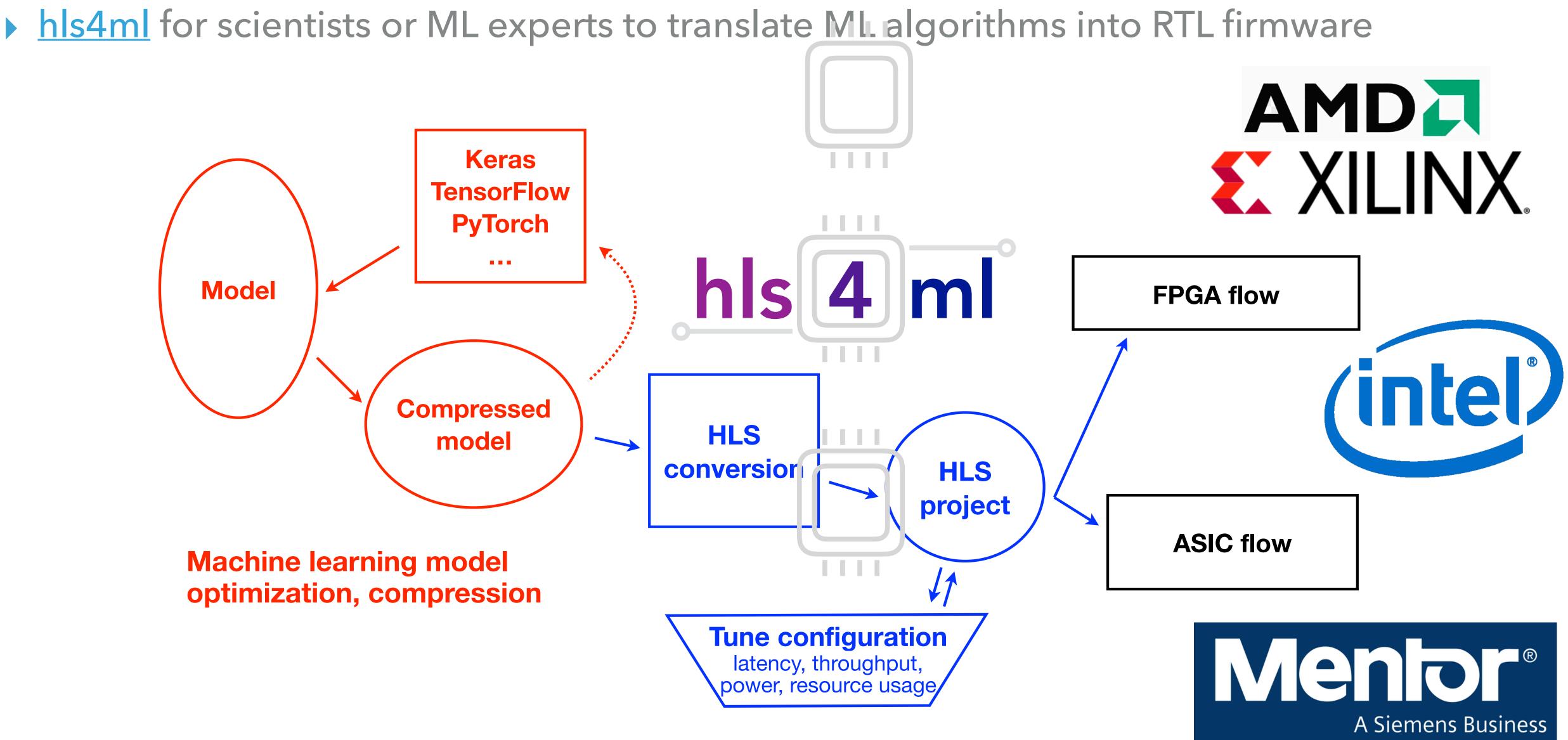


DESIGN EXPLORATION WITH HLS4ML



<u>J. Instrum. 13, P07027 (2018)</u>30

DESIGN EXPLORATION WITH HLS4ML



<u>J. Instrum. 13, P07027 (2018)</u>30

arXiv:2108.03986 **APPLICATION: ANOMALY DETECTION AT 40 MHZ** Data challenge: <u>mpp-hep.github.io/ADC2021</u> 31

Challenge: if new physics has an unexpected signature that doesn't align with existing triggers, precious BSM events may be discarded at trigger level

- Challenge: if new physics has an unexpected signature that doesn't align with existing triggers, precious BSM events may be discarded at trigger level
- Can we use unsupervised algorithms to detect non-SM-like anomalies?

- Challenge: if new physics has an unexpected signature that doesn't align with existing triggers, precious BSM events may be discarded at trigger level
- Can we use unsupervised algorithms to detect non-SM-like anomalies?
 - decompress and calculate difference

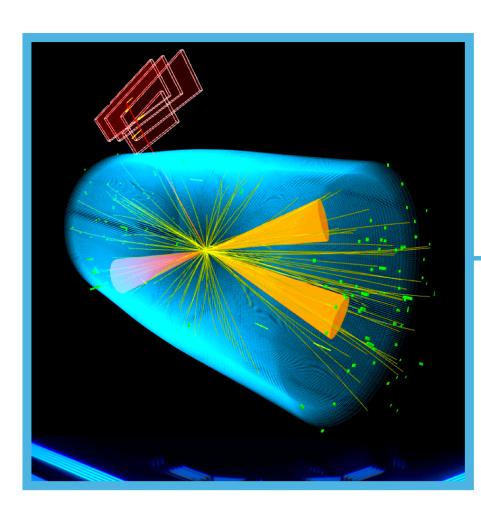
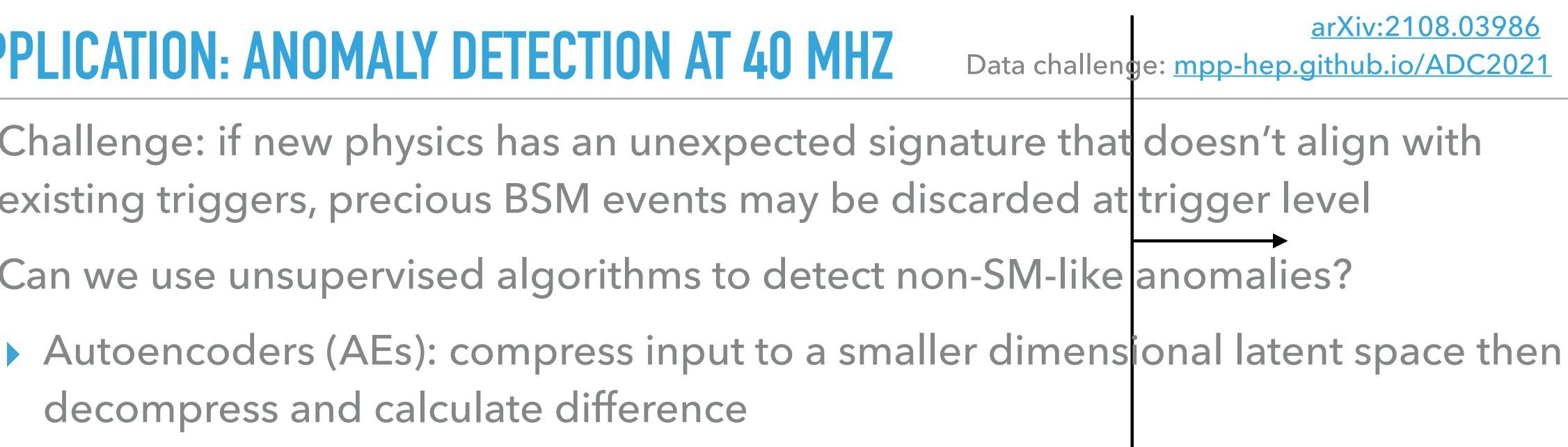
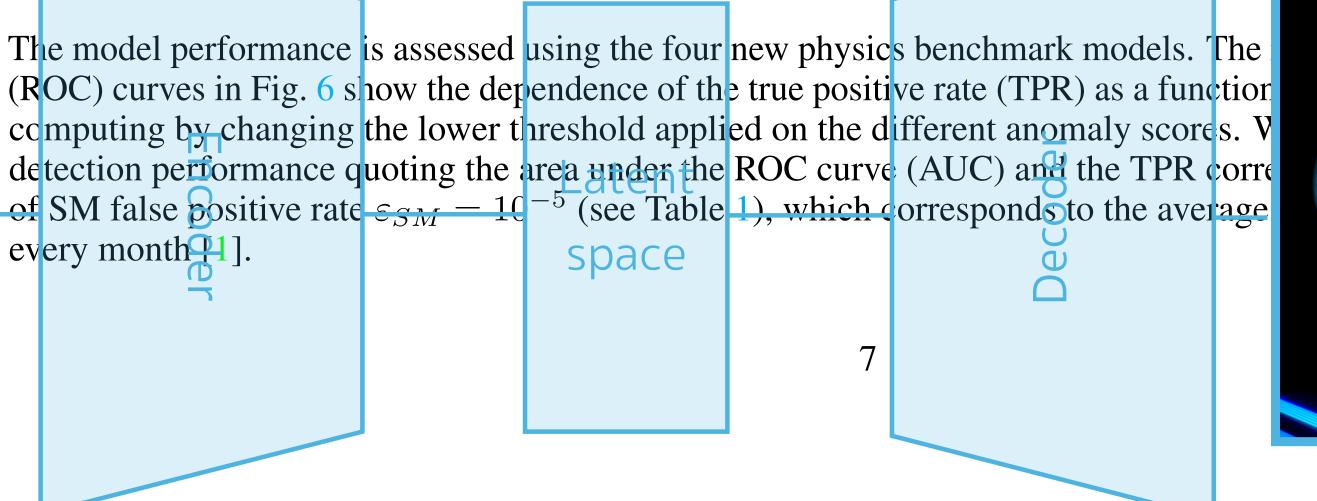
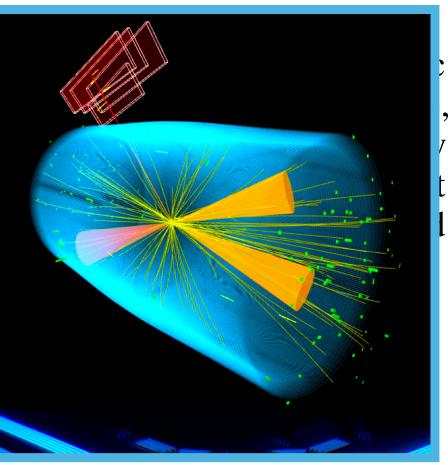


Figure 4: Distribution of four anomaly detection scores (IO AD for AE and VAE models, R_z and D_{KL}ADs for the VAE models) for the DNN model, for the SM cocktail and the four new physics benchmark models.

every month[1].

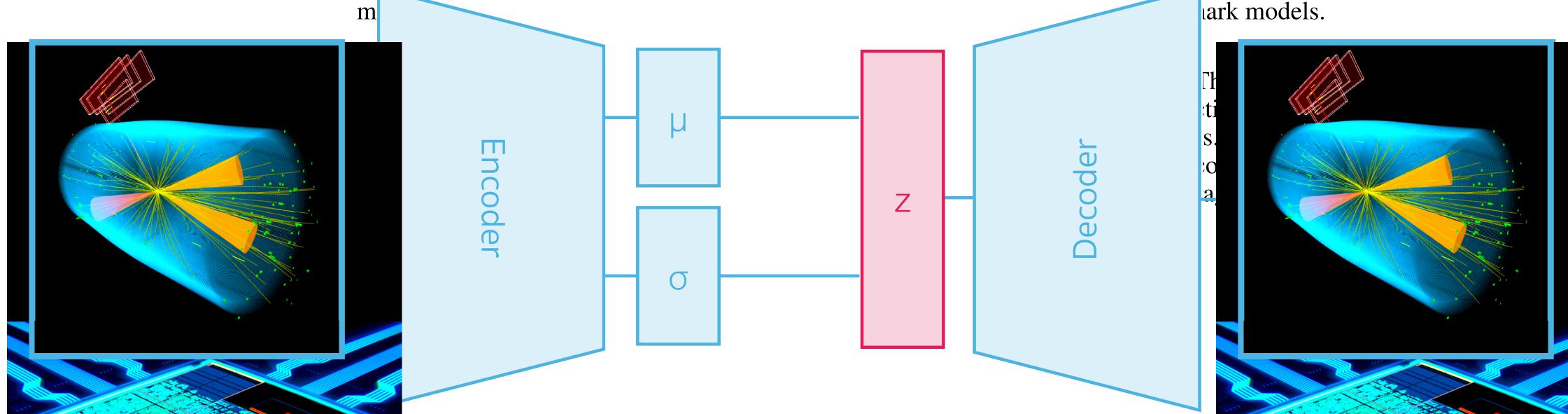




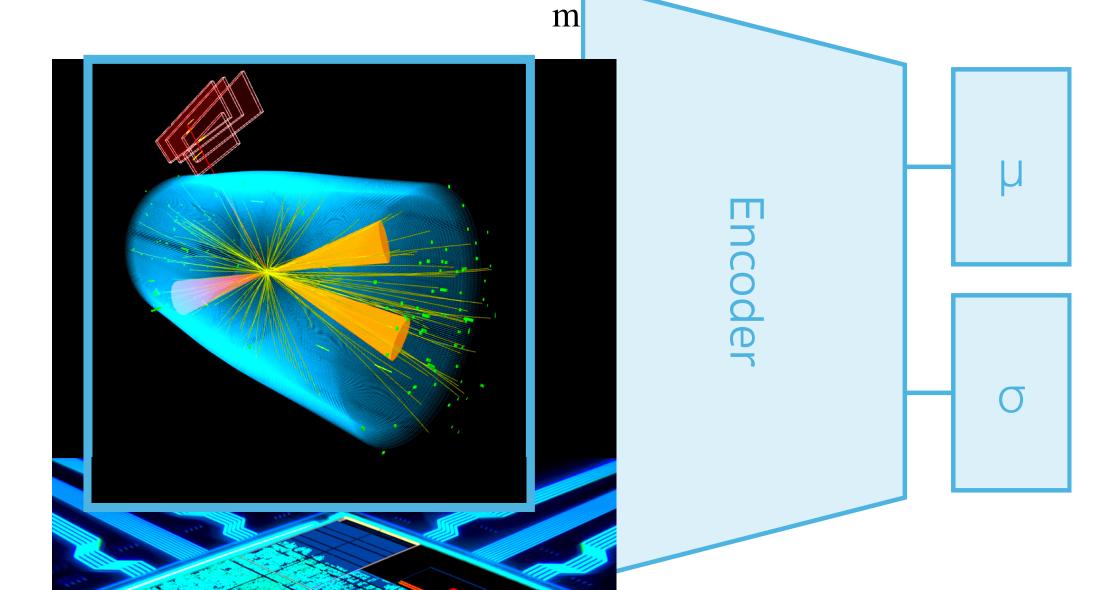


arXiv:2108.03986 **APPLICATION: ANOMALY DETECTION AT 40 MHZ** Data challenge: <u>mpp-hep.github.io/ADC2021</u>

- Challenge: if new physics has an unexpected signature that doesn't align with existing triggers, precious BSM events may be discarded at trigger level
- Can we use unsupervised algorithms to detect non-SM-like anomalies?
 - Autoencoders (AEs): compress input to a smaller dimensional latent space then decompress and calculate difference
 - Variational autoencoders (VAEs): model the latent space as a probability distribution; possible to detect anomalies purely with latent space variables r_{Fi} odels, R_z and $D_{KL}ADs$ for the VAE



- Challenge: if new physics has an unexpected signature that doesn't align with existing triggers, precious BSM events may be discarded at trigger level
- Can we use unsupervised algorithms to detect non-SM-like anomalies?
 - Autoencoders (AEs): compress input to a smaller dimensional latent space then decompress and calculate difference
 - Variational autoencoders (VAEs): model the latent space as a probability distribution; possible to detect anomalies purely with latent space variables Final Provide R and Der ADs for the VAE

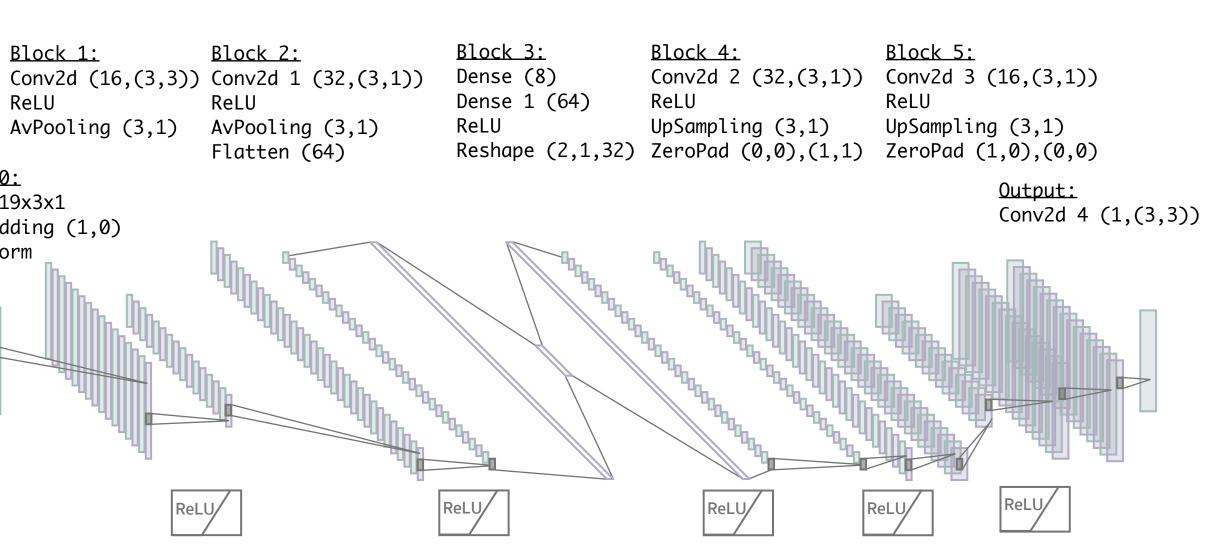


Key observation: Can build an anomaly score from the latent space of VAE directly! No need to run decoder!

$$R_z = \sum_i \frac{\mu_i^2}{\sigma_i^2}$$

<u>Block 1:</u> ReLU

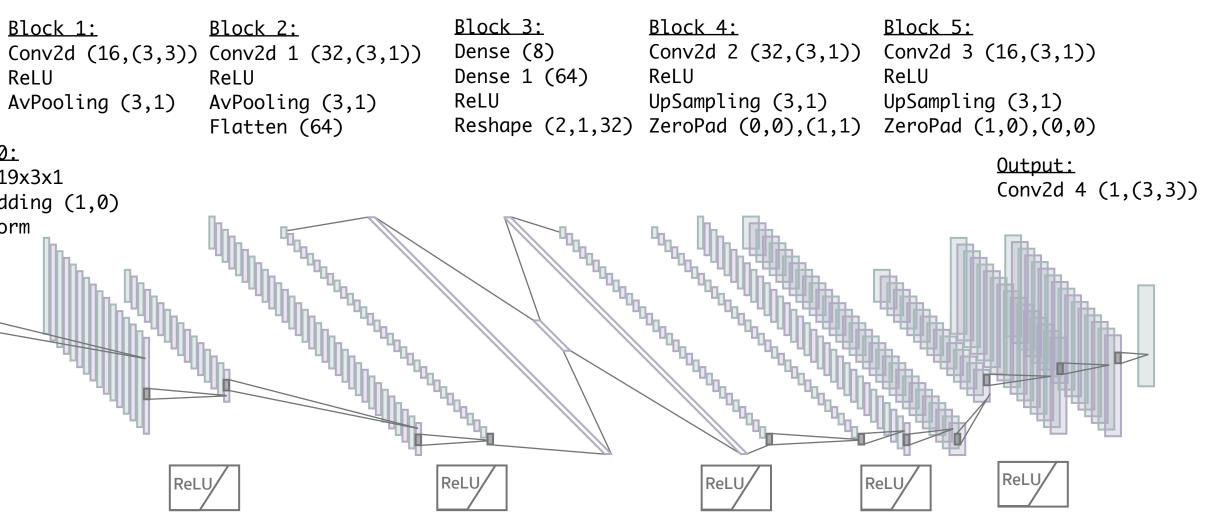
<u>Block 0:</u> Input 19x3x1 ZeroPadding (1,0) BatchNorm



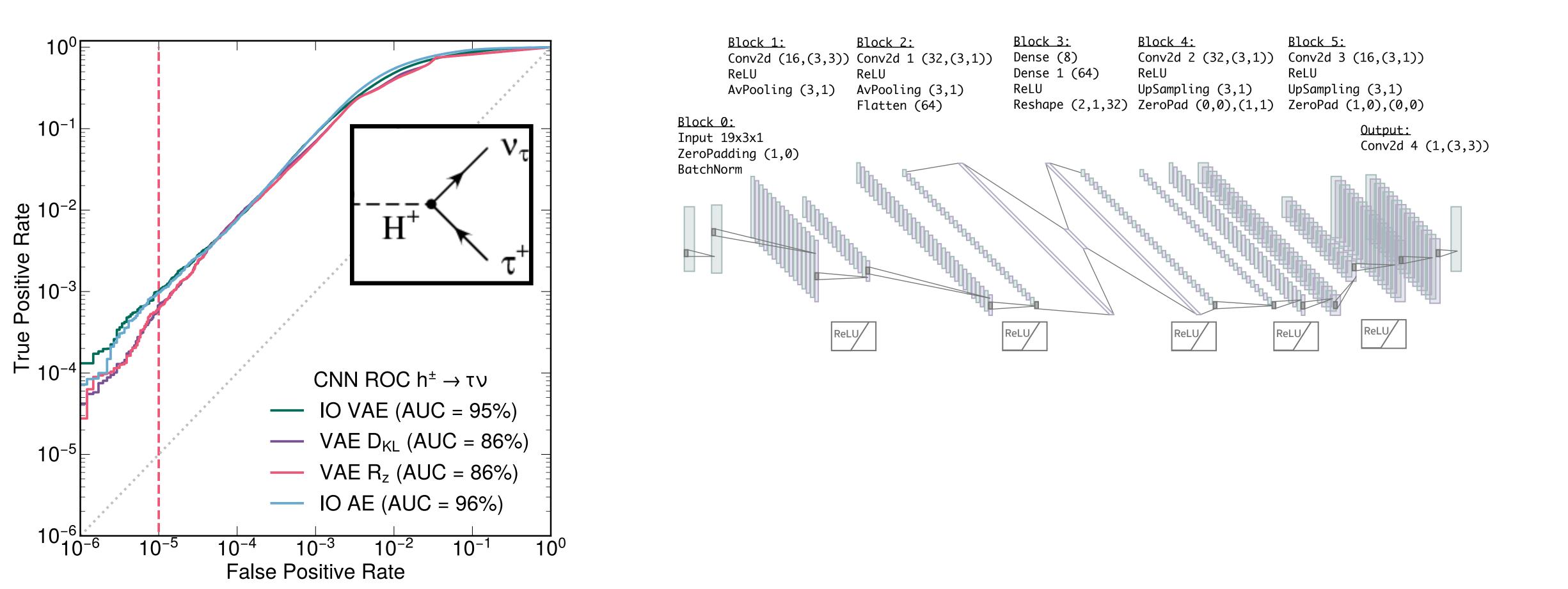
CNNs as the basis for (V)AEs for anomaly detection

<u>Block 1:</u> ReLU

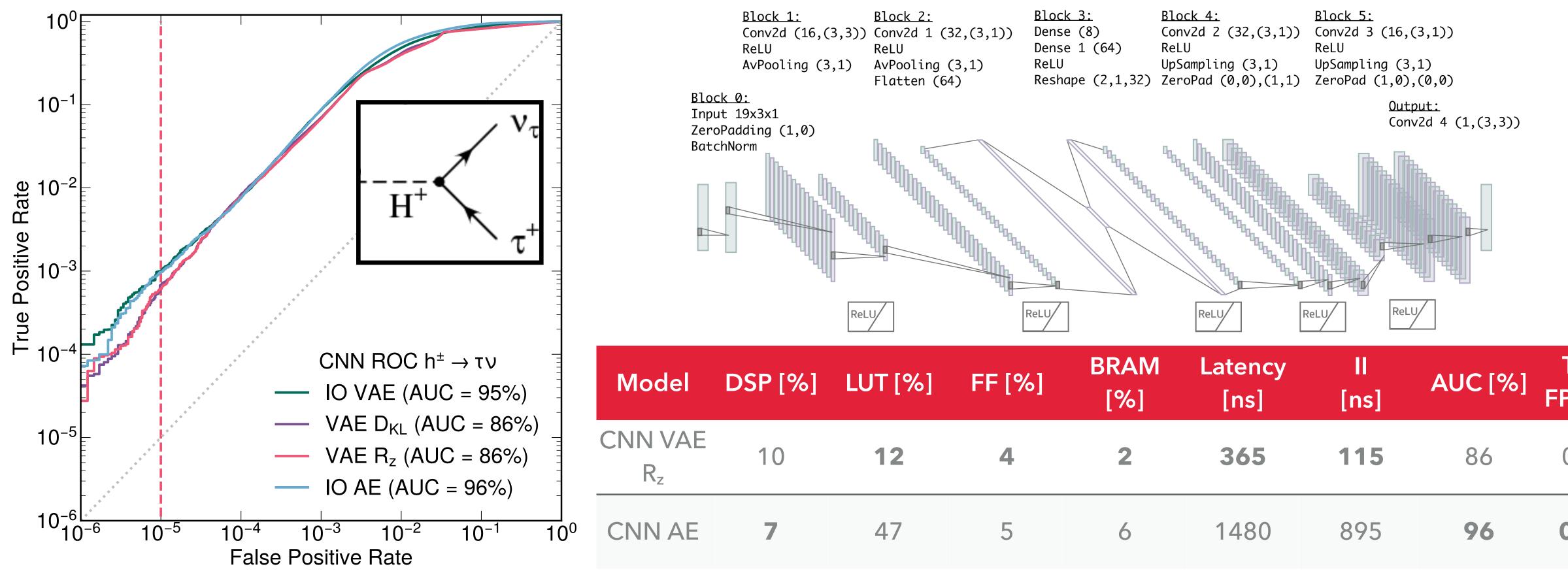
<u>Block Ø:</u> Input 19x3x1 ZeroPadding (1,0) BatchNorm



- CNNs as the basis for (V)AEs for anomaly detection
- Good anomaly detection performance for unseen signals $(LQ \rightarrow b\tau, A \rightarrow 4I, h^{\pm} \rightarrow \tau v, h^{0} \rightarrow \tau \tau)$



- CNNs as the basis for (V)AEs for anomaly detection
- Good anomaly detection performance for unseen signals $(LQ \rightarrow b\tau, A \rightarrow 4I, h^{\pm} \rightarrow \tau v, h^{0} \rightarrow \tau \tau)$
- VAE fits in latency and resource requirements for HL-LHC!

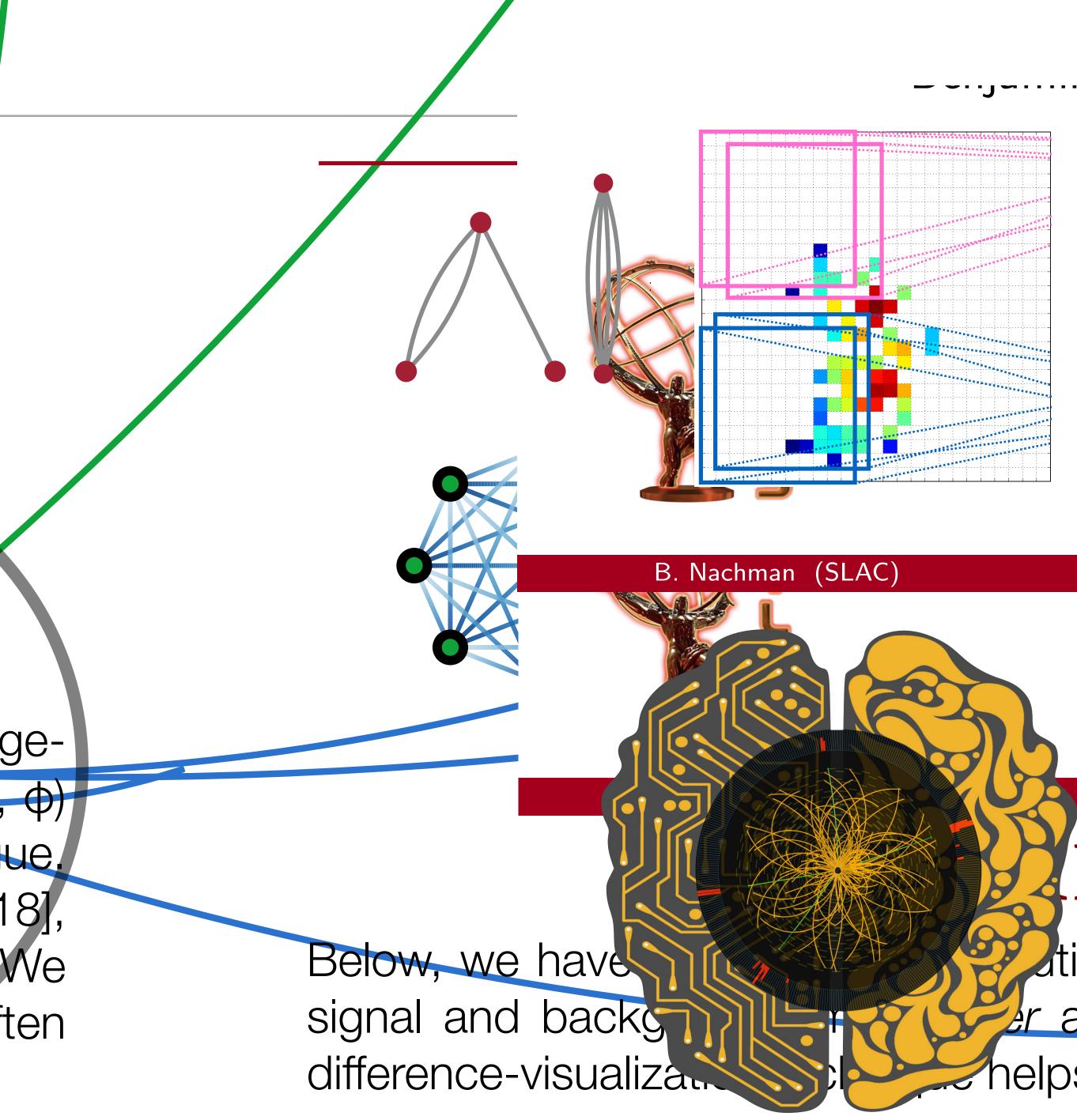


0.06%

DATA REPRESENTATIONS 8 SYMMETRIES IL ANOMALY DETECTION II. GENERATIVE MODELING III. FAST INFERENCE VI. SUMMARY & OUTLOOK

s as mages

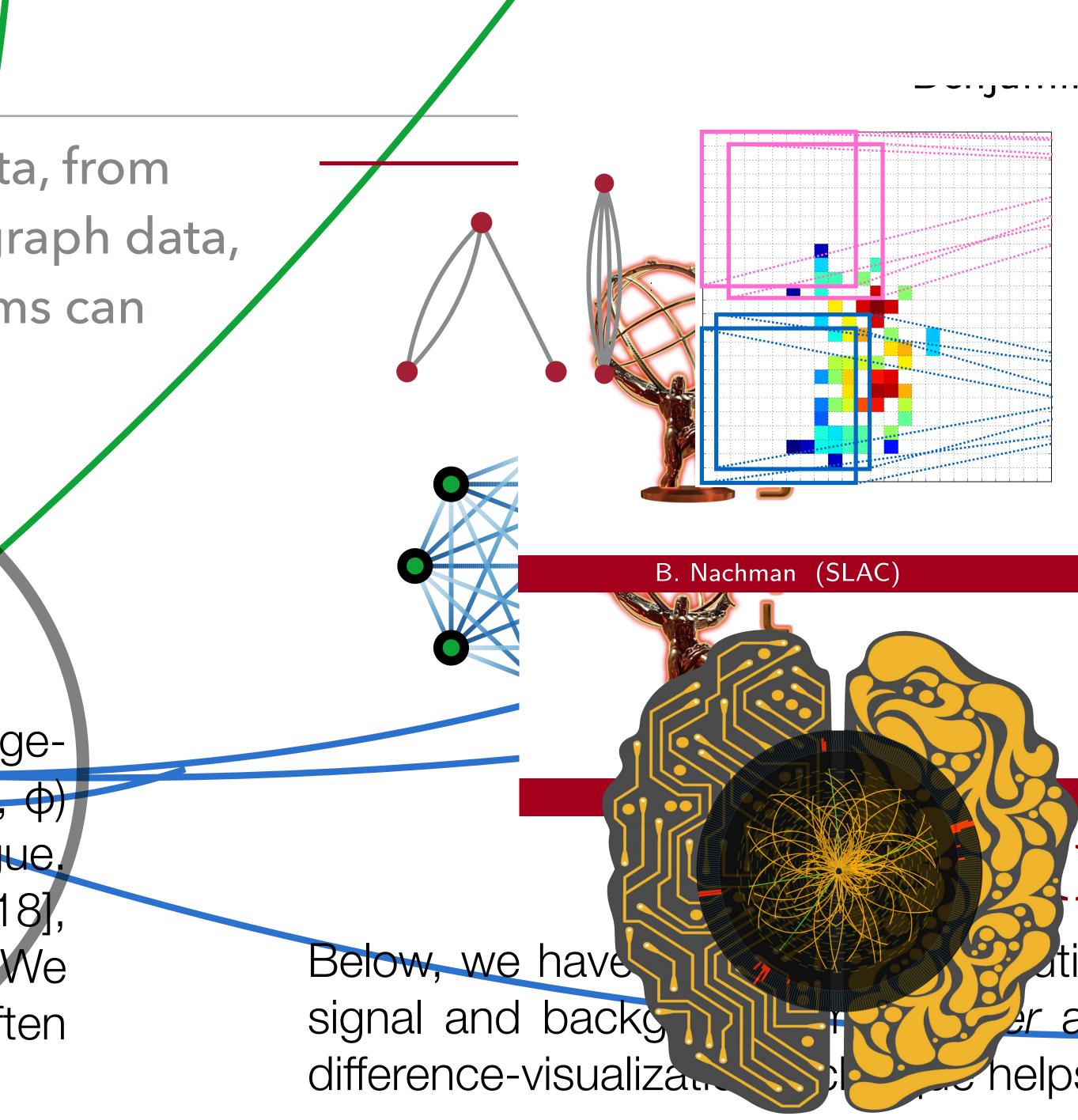
 ϕ) to a rectangular grid that allows for an imageergy from particles are deposited in pixels in (n, ϕ) em as the pixel intensities in a greyscale analogue. Introduced by our group [JHEP 02 (2015) 118], s event reconstruction and computer vision.. We he jet-axis, and normalize each image, as is often scriminative difference in pixel intensities.



 Different representations of HEP data, from tabular data, image data, set data, graph data, paired with corresponding algorithms can achieve excellent performance

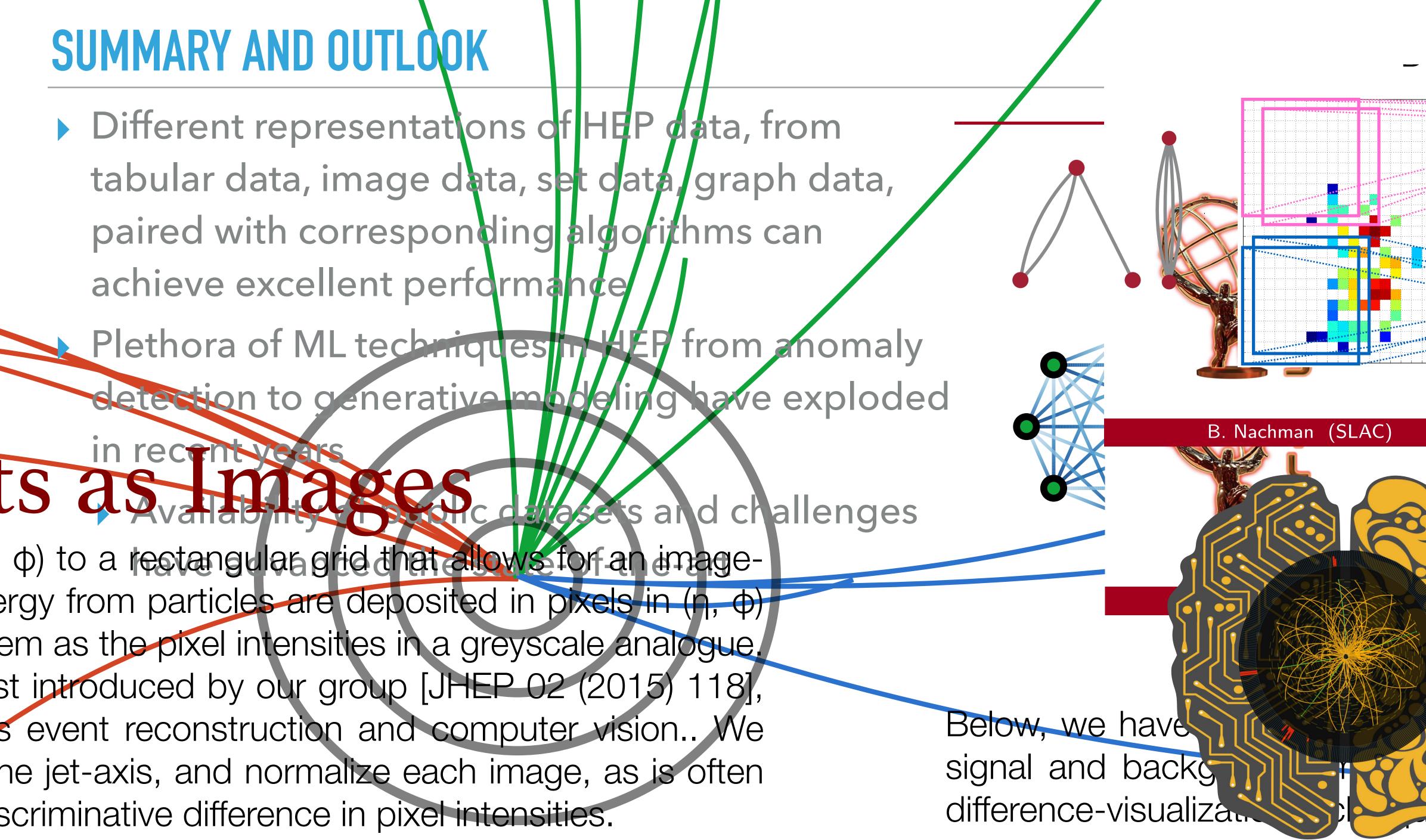
ts as inages

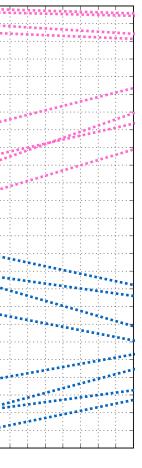
 ϕ) to a rectangular grid that allows for an imageergy from particles are deposited in pixels in (η , ϕ) em as the pixel intensities in a greyscale analogue. Introduced by our group [JHEP 02 (2015) 118], s event reconstruction and computer vision.. We he jet-axis, and normalize each image, as is often scriminative difference in pixel intensities.



- Different representations of HEP data, from tabular data, image data, set data, graph data, paired with corresponding algorithms can achieve excellent performance
- Plethora of ML techniques in HEP from anomaly
 - detection to generative modeling have exploded in recent ve

φ) to a rectangular grid that allows for an imageergy from particles are deposited in pixels in (n, ϕ) em as the pixel intensities in a greyscale analogue. st introduced by our group [JHEP 02 (2015) 118], s event reconstruction and computer vision. We ne jet-axis, and normalize each image, as is often scriminative difference in pixel intensities.

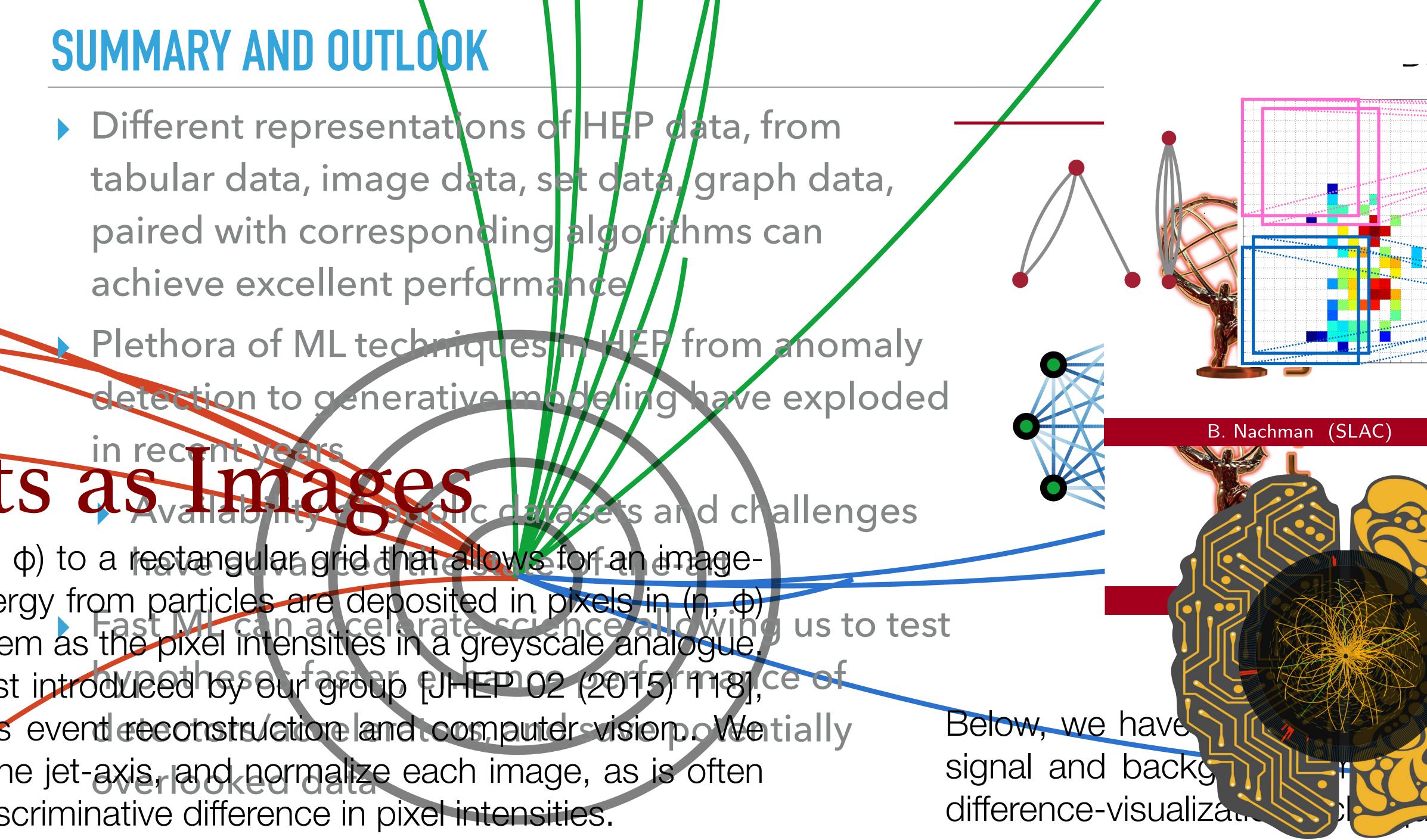


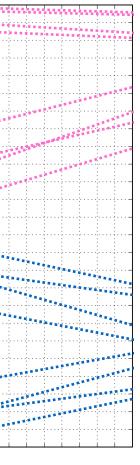


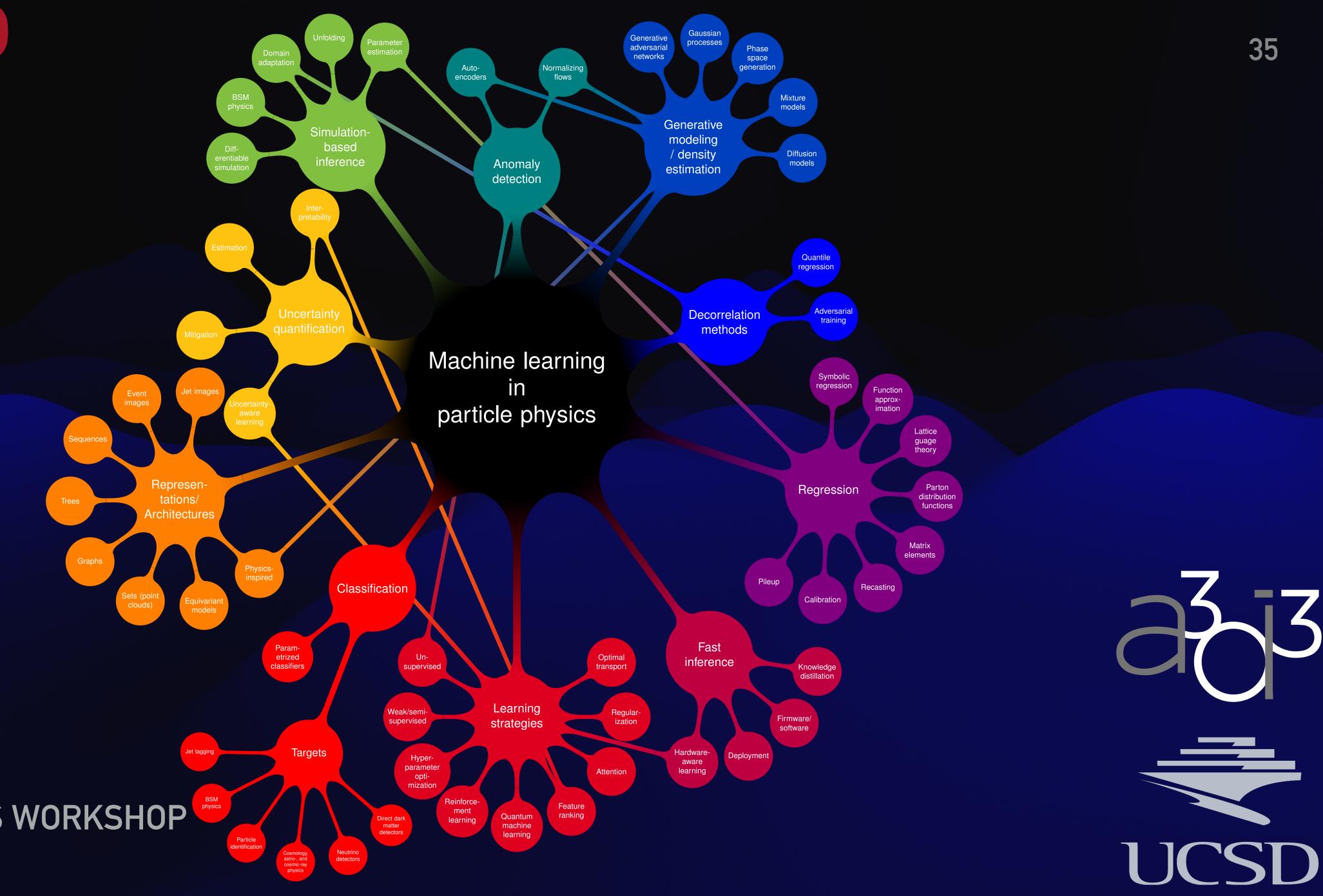
in recent ve

- Different representations of HEP data, from tabular data, image data, set data, graph data, paired with corresponding algorithms can achieve excellent performance
- Plethora of ML techniques in HEP from anomaly
 - detection to generative modeling have exploded

φ) to a rectangular grid that allows for an imageergy from particles are deposited in pixels in (n, ϕ) em as the pixel intensities in a greyscale analogue. st introduced by our group (JHEP 02 (2015) 1181, ce s event reconstruction and computer vision. We tially ne jet-axis, and normalize each image, as is often scriminative difference in pixel intensities.







JAVIER DUARTE DARK INTERACTIONS WORKSHOP NOVEMBER 16, 2022

