Searching for New Physics at Neutrino Experiments

Asli M. Abdullahi

Dark Interactions *New Perspectives from Theory and Experiment*

16th November 2022

1

Evidence for New Physics

Evidence for New Physics

How can neutrino experiments help us in finding the new physics?

Searching for New Physics

Typical setup for a pion decay-in-flight accelerator neutrino experiment

Searching for New Physics

Typical setup for a pion decay-in-flight accelerator neutrino experiment

Possible search strategies

1. Direct production of new particles and mediators

Searching for New Physics

Typical setup for a pion decay-in-flight accelerator neutrino experiment

Possible search strategies

- **1. Direct production of new particles and mediators**
- **2. Indirect effects on e.g. neutrino oscillation**

Searching for NP: Direct production

1. Drell-Yan/Bremmstrahlung in the proton target

2. Meson decay-in-flight

3. Beam dump mode

4. In-detector neutrino scattering

Asli Abdullahi, Dark Interactions, 16 November 2022

Searching for NP: Indirect effects

Examples of indirect NP include e.g. NSIs, EFTs (see arXiv: 1901.04553, 1910.02971)

Heavy new physics can modify **neutrino production**, **propagation** and **detection** leading to modified oscillation probabilities

Modifications can be computed in the presence of **EFT** and measurements of low-energy observables translated into constraints on higher-dimension SMEFT operators

Why Neutrino Experiments?

- **1.** High POT (~1e21) → **large flux of charged and neutral mesons**
- **2.** Large detector masses \sim O(1e2) tonnes
- **3.** Good PID (p, μ, e, γ reconstructed)
- **4.** Good calorimetry
- **5.** High cosmic rejection
-

6. Parasitic: cost shared with neutrino projects See talk by Richard Van de Water, U.S. Cosmic Visions 2017 "Future possibilities at Proton fixed target experiments"

New Physics Searches at *Current* **and** *Future* **Neutrino Experiments**

The 3+1 sterile solution to SBL anomalies is now disfavoured

Light sterile neutrino is relativistic at early times and contributes to Neff

strong constraints from CMB+LSS

S. Hagstotz et al, arXiv:2003.02289

The 3+1 sterile solution to SBL anomalies is now disfavoured

Furthermore, strong tensions between appearance and disappearance data

$$
P_{\mu\mu}^{\rm SBL} = 1 - 4|U_{\mu 4}|^2 (1 - |U_{\mu 4}|^2) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)
$$

$$
P_{\mu e}^{\text{SBL}} = 4|U_{\mu 4}|^2|U_{e 4}|^2 \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E}\right)
$$

M. Dentler et al, JHEP 08 (2018) 010

Most recent sterile search comes from MicroBooNE which does not exclude the full LSND (and MiniBooNE) preferred regions

P. Abratenko et al, arXiv:2210.10216

Beam Dump Mode

BSM searches at neutrino experiments suffer large neutrino bkgs and the NP can be hard to detangle

MiniBooNE-DM collab. arXiv: 1807.06137

Beam Dump: Light Dark Matter

MiniBooNE was the first accelerator neutrino experiment to perform a dark matter search in beam dump mode

MiniBooNE-DM collab. arXiv: 1807.06137

Vector portal LDM

LDM at a "target-less" DUNE

Recently been proposed that running in beam dump mode at DUNE for < 3 months at half the expected initial beam intensity could give competitive limits on LDM!

BSM searches at ArgoNeuT

Search for Millicharged particles (MCP)

Flux of MCPs from neutral meson decays or Drell-Yan at target scatter off electrons

Signal: two soft energy depositions aligned with target direction

PHYSICAL REVIEW LETTERS 124, 131801 (2020)

New Particles in Neutrino Scattering

New particles and mediators may be produced in the scattering of neutrinos on the detector material

Distinguishing these processes from SM interactions requires excellent PID and reconstruction → **LArTPC detectors**

- e.g. ArgoNeuT, MicroBooNE (running)
	- + ICARUS, SBND, DUNE (upcoming)

Schematic of MicroBooNE TPC and cryotank

- 1. Improved hadronic vertex ID
- 2. Better spatial resolution
- 3. Improved calorimetry

BSM searches at MicroBooNE

Higgs portal scalar decaying to e⁺e pair (first search for an e⁺e final state)

*MicroBooNE is located 8 deg. off-axis with respect to the NuMI target

MicroBooNE LEE search

Among MicroBooNE's main physics goals is to determine the origin of the MiniBooNE LEE

Searches for an eLEE and gLEE have already been performed

Search for excess e- (PRL 128, 241801 2022)

No electron or single photon excess observed compatible with MiniBooNE!

Asli Abdullahi, Dark Interactions, 16 November 2022 21

Search for SM NC ∆ → Ny (PRL 128, 111801 2022)

MicroBooNE LEE search

A number of new physics models which predict EM final states (e⁻, γ, e⁺e⁻) have been proposed as alternatives to a SM LEE, e.g.

While MicroBooNE is yet to perform

dedicated searches for these models, we may already be able to constrain them using MicroBooNE public data

**** work-in-progress ****

Jaime Hoefken Zink Uni. of Bologna

Matheus Hostert Perimeter & UMN

Mark

LANL

Daniele Massaro Uni. of Bologna Georgia Karagiorgi Columbia Uni

Silvia Pascoli Uni. of Bologna

Ross-Lonergan

Guanqun Ge Columbia Uni.

MicroBooNE LEE search

A number of new physics models which predict EM final states (e⁻, γ, e⁺e⁻) have been proposed as alternatives to a SM LEE, e.g.

gLEE: NC ∆ → Nγ search

MicroBooNE constrain two topologies in the gLEE (γLEE) search:

1. $\Delta^+ \rightarrow p \gamma \rightarrow 1 \gamma 1 p$ 2. Δ^0

2.
$$
\Delta^0 \rightarrow n \gamma \rightarrow 1 \gamma \text{ Op}
$$

gLEE: NC ∆ → Nγ search

MicroBooNE constrain two topologies in the gLEE (γLEE) search:

2. $\Delta^0 \rightarrow n \gamma \rightarrow 1 \gamma 0 p$

While our models do contribute to both topologies, we **consider only the 1γ 0p topology** to avoid issues with nuclear modelling

caveat: 1γ 0p selection has larger bkg, as proton kinematics cannot be leveraged for bkg rejection

gLEE 1γ 0p selection

Impossible to apply official MicroBooNE selection and so we make some educated guesses

We can use our knowledge of e+e- reconstruction to make a pseudo-topological cut

As well as information about the energy distribution of the true NC delta decay photons

pseudo-1γ 0p selection

Pairs of uniformly distributed e⁺e⁻ are passed through MicroBooNE reconstruction and topological reconstruction efficiencies derived

Preliminary selection

Light dark photon BP Light scalar BP Heavy dark photon BP

Heavy scalar BP TMM BP

Takeaways: Why Neutrino Experiments?

- **1.** High POT O(1e21) → **large flux of charged and neutral mesons** that can decay to new particles which leave signal in the detector
- **2.** Can take advantage of **potential to run in beam dump mode** to search for broader dark sector models
- **3.** Strong **PID** (p, μ, e, γ), **spatial** and **energy resolution** (esp. LArTPC-based detectors) make distinguishing NP from SM more possible
- **4. Parasitic**: Cost burden is shared with on-going neutrino projects and greater goal of elucidating oscillation parameters

Thank you for your attention!