Do dark matter and neutrinos talk to each other?

Based on arXiv:1912.09486, 2205.12950, and 2210.01303

Carlos Argüelles (they/them)*

Dark Interactions Nov. 16, 2022

*Disclaimer:This talk is not on behalf of the IceCube Collaboration. Opinions/ideas/mistakes are mine.

Why Search For Dark Matter With Neutrinos?

Neutrinos present BSM properties (mass)

Neutral particles allow for direct coupling to DM

The final frontier for indirect searches

- Neutrino detectors and fluxes
- Searching for an excess of neutrinos
- Searching for a deficit of neutrinos
- Searching for a strange neutrino flavor effects

Stops

How do we move forward?

START

Neutrino detectors and fluxes

- Searching for an excess of neutrinos
- Searching for a deficit of neutrinos
- Searching for a strange neutrino flavor effects

Stops

STOP

• How do we move forward?

START

Neutrino detectors through the decades

Multiple different detection technologies to hunt for neutrinos. Different pros and cons.

"Background/Foreground" neutrino fluxes

Depending on the technology we maybe able to reduce these backgrounds from DM-induced neutrinos. For example the Sun only produces neutrinos so antineutrino searches remove this foreground.

Neutrino experiments I will discuss in this talk

	Energy Range	Experimental Analysis	Directionality	Detected Flavor
MeV	$2.5-15~{\rm MeV}$	Borexino (Bellini et al., 2011)	×	$\bar{\nu}_e$ (IBD)
	$8.3-18.3~{\rm MeV}$	KamLAND (Gando et al., 2012)	\checkmark	$\bar{\nu}_e$ (IBD)
	$10-40~{ m MeV}$	JUNO (An et al., 2016)	\checkmark	$\bar{\nu}_e$ (IBD)
	$15 - 10^3 \text{ MeV}$	SK (Olivares-Del Campo et al., 2018a)	×	$\bar{\nu}_e$ (IBD)
GeV	10 - 10 Mev	DARWIN (McKeen and Raj, 2018)	×	All Flavors (Coherent)
	$0.1 - 30 { m ~GeV}$	DUNE (Abi et al., 2020b) HK (Olivares-Del Campo et al., 2018b)	×	$ u_e, \bar{\nu}_e, \nu_{ au}, \bar{\nu}_{ au} \ (ext{CC})$
	$1-10^4~{ m GeV}$	SK (Abe et al., 2020; Frankiewicz, 2015)	\checkmark	All Flavors
leV	$20-10^4~{\rm GeV}$	IceCube (Aartsen et al., 2016a)	\checkmark	All Flavors
	$50-10^5~{\rm GeV}$	ANTARES (Adrian-Martinez et al., 2015)	\checkmark	$ u_{\mu}, \ ar{ u}_{\mu} \ ({ m CC})$
	$0.2 - 100 { m TeV}$	CTA (Queiroz et al., 2016)	\checkmark	All Flavors (Bremsstrahlung)
PeV	$10-10^4~{\rm GeV}$	IC-Upgrade (Baur, 2019)	\checkmark	All Flavors
	$> 10 \ {\rm PeV}$	IC Gen-2 (Aartsen et al., 2014b)	\checkmark	All Flavors
	$10-10^4~{\rm TeV}$	KM3Net (Adrian-Martinez et al., 2016)	\checkmark	All Flavors
EeV	$1-100 { m PeV}$	TAMBO (Wissel et al., 2019)	\checkmark	$ u_{ au}, ar{ u}_{ au} ({ m CC})$
	$> 100 \ \mathrm{PeV}$	GRAND (Alvarez-Muniz et al., 2018)	\checkmark	$ u_{ au}, ar{ u}_{ au} (ext{CC})$

ARGÜELLES, ET AL., REV. MOD. PHYS. 93, ARXIV:1912.09486

IVE IRI Itasi

Neutrino detectors and fluxes

- Searching for an excess of neutrinos
- Searching for a deficit of neutrinos
- Searching for a strange neutrino flavor effects

Stops

STOP

• How do we move forward?

START

Indirect Detection

In this talk I will only focus on dark matter decaying or annihilating directly to neutrinos

Recipe to obtain the neutrino flux

Similar in the case of annihilation. Will discuss this later.

For good limits, we need good predictions!

https://github.com/IceCubeOpenSource/charon

IceCube results with updated calculations to appear soon!

Q. Liu & J. Lazar *et al* 2007.15010

Bauer, Rodd & Webber et al 2007.15001

Background agnostic constraints on Dark matter making neutrinos

Flux of neutrinos from dark matter cannot overshoot measurements of the integrated neutrino flux.

Background agnostic constraints on Dark matter making neutrinos

Associated gamma-ray flux should also not overshoot constraints

15

CA, D. Delgado, A. Friedlander, A. Kheirandish, I. Safa, A.C. Vincent, H. White arXiv:2210.01303

Background informed constraints on Dark matter annihilation

Constraints on dark matter annihilation to neutrinos

CA, A. Diaz, A. Kheirandish, A. Olivares-Del-Campo, I. Safa, A.C. Vincent *Rev. Mod. Phys.* 93, 35007 (2021); See also Beacom et al. *PRL* 99: 231301, 2007.

STOP

- Neutrino detectors and fluxes
- Searching for an excess of neutrinos
- Searching for a deficit of neutrinos
- Searching for a strange neutrino flavor effects
- How do we move forward?

START

Dark matter neutrino incoherent scattering

DM-v interaction will result in scattering of neutrinos from extragalactic sources, leading to *anisotropy* of diffuse neutrino flux.

CA, A. Kheirandish & A. Vincent Phys. Rev. Lett. 119, 201801

HESE Neutrino Skymap

HESE: high-energy starting events IceCube Collaboration, arXiv:2205.12950

Events are compatible with an isotropic distribution: found no signal!

Also include effects in energy and direction

25

New constraints on

neutrino-dark matter interactions

Color scale is the maximum allowed coupling.

Cosmological bounds using Large Scale Structure from Escudero et al 2016

IVE IRI TAS -----χ

Second Generation Analyses Using Medium-Energy Starting Events

Larger sample sizes data sets yet to be used for these searches. Only IceCube's High-Energy Starting Events used so far.

STOP

- Neutrino detectors and fluxes
- Searching for an excess of neutrinos
- Searching for a deficit of neutrinos
- Searching for a strange neutrino flavor effects
- How do we move forward?

START

Neutrinos From Cosmic Beam dump Blazar: TXS 0506+056

Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A RESEARCH

The IceCube Collaboration, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift/NuSTAR,

RESEARCH ARTICLE

M_{NEUTRINO ASTROPHYSICS}

^{fl}Neutrino emission from the direction hiof the blazar TXS 0506+056 prior to The the IceCube-170922A alert INT

VEIIceCube Collaboration*†

 ΔTS

A high-energy neutrino event detected by IceCube on 22 September 2017 was coincident in INT direction and time with a gamma-ray flare from the blazar TXS 0506+056. Prompted by eosithis association, we investigated 9.5 years of IceCube neutrino observations to search for and excess emission at the position of the blazar. We found an excess of high-energy neutrino Vevents, with respect to atmospheric backgrounds, at that position between September 2014 IN and March 2015. Allowing for time-variable flux, this constitutes 3.5 evidence for neutrino emission from the direction of TXS 0506+056, independent of and prior to the 2017 flaring episode. This suggests that blazars are identifiable sources of the high-energy astrophysical neutrino flux.

rumented volume of 1 km³ within the Antarctic

be discovered the existence of a diffuse high-energy astrophysical neutrinos in 4, 15). Measurements of the energy specave since been refined (16, 17), indicating neutrino spectrum extends above several wever, analyses of neutrino observation Declinati ot succeeded in identifying individual of high-energy neutrinos (12, 18). This s that the sources are distributed across and that even the brightest individual contribut Scoboa+0561 fraction of the served flux. ntly, the detection of a high-energy neutriceCube, together with observations in rays and at other wavelengths, indicates

azarbex50506+056, located at right ascension (RA967.35820and declination (Dec) +5.69314° (12000MAQ10 (9599)) may be an individually ider PKS 0502+049 he background atmospheric neutringles of the tifiable sewce at high-energy pentrinos (20). The

18

ber of neutrinos with energy *E* scales as $dN/dE \sim E^{-2}$, the distribution of muon energies is different

flux, which scales a

Chasing the ammonia

economy p. 120

Time invested matters for mice

rats, and humans pp. 124 & 17

Two spindles are better

13 JULY 2018

than one pp. 128 & 189

Multimessenger observations of an astrophysical neutrino SOURCE pp. 115, 146, & 147

(Submit manuscr

Breaking news!

NGC1068 is a

HOME > SCIENCE > VOL. 378, NO. 6619 > EVIDENCE FOR NEUTRINO EMISSION FROM THE NEARBY ACTIVE GALAXY NGC 1068

RESEARCH ARTICLE | NEUTRINO ASTROPHYSICS

f У in 🍲 🗞

About 🗸

Evidence for neutrino emission from the nearby active galaxy NGC 1068

Flavor composition @ source

 $(\alpha_e : \alpha_\mu : \alpha_\tau)$ (GRBs, AGNs, blazars, pulsars...) $\pi^+ \to \mu^+ + \nu_\mu$ $\downarrow^+ \to e^+ + \nu_\mu + \bar{\nu}_e$ (1:2:0)Pion Muon-damped $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ (0:1:0) $n \to p + e^- + \bar{\nu}_e$ (1:0:0)Neutron

Fraction of electron flavor at Earth

32

100% muon neutrino

100% tau neutrino

IVEL RI

1/3 of each flavor

After oscillations where will the different sources end up?

See also Bustamante et al. PRL 115, 161302 (2015); Rasmussen et al. 1707.07684; Palomares-Ruiz 1411.2998; Palladino et al 1502.02923; Bustamante et al 1610.02096; Brdar et al. 1611.04598; Farzan & Palomares-Ruiz 1810.00892; CA et al. 1909.05341; Learned & Pakvasa hep-ph/9405296 ..

Latest astrophysical neutrino flavor measurement

IceCube Collaboration arXiv:2011.03561

Search for Secret Interactions via Flavor Morphing

As neutrinos travel from their far away source they can interact with dark matter along the way.

VEL R TAS

Trajectories in the Flavor Triangle In the Presence of Secret Interactions

IceCube collaboration arXiv:2111.04654

40

Results for high-dimensional operators

IceCube collaboration arXiv:2111.04654

Coherent Dark Matter Scattering

Capozzi et al. 1804.05117

- Neutrino detectors and fluxes
- Searching for an excess of neutrinos
- Searching for a deficit of neutrinos
- Searching for a strange neutrino flavor effects

STOP

• How do we move forward?

START

Landscape of New Physics That We can Explore

JEM-EUSO

Many Neutrino Telescopes On Our Way GR

The IceCube Upgrades!

See talk by Jason Koskinen this week! Phase 1: 7 new, highprecision strings in the central, densely instrumented region.

Phase 2: x10 the volume of present IceCube, plus additional detectors.

See talk by Lu Lu!

Thinking about Earth-skimming neutrino detectors

The geometry here is key for the acceptance of neutrino detection

Thinking about Earth-skimming neutrino detectors

The geometry here is key for the acceptance of neutrino detection

This would be a more ideal scenario, but can't put mountain over detector

See talk by Pavel Zhelnin this afternoon for new ideas on tau neutrinos

TAMBO

TAU AIR-SHOWER MOUNTAIN-BASED OBSERVATORY (TAMBO) · COLCA VALLEY, PERU

Romero-Wolf et al https://arxiv.org/abs/2002.06475

*TAMBO means house or inn in Quechua.

Projected Upgrade Flavor Measurement

N. Song, S. Li, CA, M. Bustamante, A. Vincent (arXiv:2012.12893)

Take home message

We live in interesting times! Nu-probes are available and old puzzles remain!

- Astrophysical neutrinos provide new ways to search for dark matter.
- The flavor of astrophysical neutrinos is a powerful probe of new physics.
- The future is bright in neutrino telescopes: new detectors and technologies ahead!

May your chosen trail lead you to new physics!

Bonus slides

Sources of Astrophysical Neutrinos

(arXiv:1007:0006)

New Physics In Astrophysical Neutrino Flavor

Rasmussen et al Phys. Rev. D 96, 083018 (2017) arXiv:1707.07684

Currently working on simulation with detailed geography of the Colca valley

- Initial simulation of ν_{τ} in Colca valley is complete
- Working on connecting to CORSIKA to simulate air shower
- TauRunner will serve as neutrino injector
- All being written in Julia

Second Generation Analyses Using Medium-Energy Starting Events

Constraints from $\nu_{\mu} \rightarrow \nu_{e} / \nu_{e} \rightarrow \nu_{e}$ searches on 3+1 with MicroBooNE?

MicroBooNE collaboration arXiv:2110.14054,2110.13978,2110.14080

CA, I. Esteban, M. Hostert, K.J. Kelly, J. Kopp, P.A.N. Machado, I. Martinez-Soler, Y. F. Perez-Gonzalez, arXiv:2111.10359