Progress with RF Characterisation facility at STFC

7th IFAST WP9 Meeting
1st-2nd December 2022

Daniel Seal
Lancaster University/Cockcroft Institute
daniel.seal@cockcroft.ac.uk
Facility Reminder

- Measurements of R_s with RF-DC compensation using Nb choke cavity (3 choke or 2 choke)
- Aim to test planar samples 90 - 130 mm diameter (100 mm is ideal size) with 2 day turnaround between tests
- So far allows R_s measurements of
 - $f_0 = 7.8$ GHz
 - $T_S = 4$ to 10 K
 - RF Power up to 1 W
 - $B_{s, pk} \leq 1$ mT

7th IFAST WP9 Meeting 1st-2nd December 2022
Facility Upgrades – 2 Choke Cavity & Sample-Cavity Gap

- **Cavities:**
 - Studying difference in performance between 2 and 3 choke cavities – both cavities haven’t received full treatment
 - CST
 - Experimentally (effect of polishing, heat treatment...)
 - At 5 K:
 - R_s (2 choke) \sim 600 μΩ,
 - R_s (3 choke) \sim 120 μΩ
 - 2 choke cavity sent to IJCLab for full treatment

- **Sample-Cavity Gap Optimisation:**
 - Wish to maximize % of RF power dissipated on sample
 - Highest power dissipation on the sample for a gap of 0.5 mm.
 - Significant leakage through gap > 4 mm
 - Sample measurements can still happen even if choke fails or cavity quality is poor
Facility Upgrades - RF Bunker

• Potential to increase B_{peak} (overlap with QPR):

<table>
<thead>
<tr>
<th></th>
<th>Q</th>
<th>$P_{\text{cav, max}}$ (W)</th>
<th>B_{peak} (mT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present state</td>
<td>7×10^5</td>
<td>0.3</td>
<td>1.1</td>
</tr>
<tr>
<td>With PLL</td>
<td>3×10^6</td>
<td>0.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Improve cavity Q</td>
<td>6×10^6</td>
<td>0.3</td>
<td>3.6</td>
</tr>
<tr>
<td>Increase CW Power</td>
<td>6×10^6</td>
<td>1</td>
<td>8.1</td>
</tr>
<tr>
<td>Increase CW Power</td>
<td>6×10^6</td>
<td>1.5</td>
<td>9.9</td>
</tr>
<tr>
<td>Pulsed power</td>
<td>6×10^6</td>
<td>5</td>
<td>18</td>
</tr>
</tbody>
</table>

• Higher fields difficult at our frequency & Qs
• A new bunker would allow for present RF power safety limits to be exceeded
Bulk Nb Samples

Bulk Nb 1

![Graph showing $R_s (\mu\Omega)$ vs $T_{Sample} (K)$ for Bulk Nb 1 (Pre-MP), Bulk Nb 1 (Post-MP), Bulk Nb 2, and BCS.]

Pre-MP

Post-MP

Courtesy of O. Hryhorenko (IJCLab)
Nb on Cu Samples

- High impulse magnetron sputtering (HiPIMS)
- 130 mm diameter diamond turned Cu disks.

R_s (μΩ)

T_{Sample} (K)

$\sim 500 ^\circ C$

$\sim 330 ^\circ C$

Bulk Nb 1 annealed at $\sim 600 ^\circ C$
Nb/AlN/NbTiN Multilayers

Thicknesses:
- MP Bulk Nb: 3 mm
- AlN: ~10 nm
- NbTiN: ~180 nm

Deposition temperature: 600-650 °C
Possibility to estimate T_c whilst keeping cavity temperature fixed
Nb/AlN/NbTiN Multilayers

- Additional ~ 620 nm NbTiN deposited → total = 800 nm NbTiN on existing layers
- Deposition temperature: 600-650 °C

$R_s (\mu \Omega)$ vs T_{Sample} (K)
Nb/AlN/NbTiN Multilayers

$T_c \sim 16.9 \text{ K}$

$T_c \sim 16.1 \text{ K}$

7th IFAST WP9 Meeting 1st-2nd December 2022
From planar samples to real cavities

- **Aim**: Best performing flat samples → split cavities

- **3 sets of samples:**
 - Nb coated planar samples →
 - Tested with choke cavity
 - Up to 3 planar samples per week!
 - Split cavity deposited with planar magnetron & planar target
 - SRF test
 - Split cavity deposited with cylindrical magnetron & tubular target
 - SRF test
Future Plans

• Continuing RF testing of planar thin films:
 – Nb/AlN/NbTiN
 – Nb$_3$Sn
 – Nb
 – Etc
• Moving facility to an RF bunker early 2023 will allow for higher peak fields (overlapping with QPR)
• Will accept samples from IFAST partners on disks 90-130 mm diameter (up to 10 mm thickness)
 – We can provide unpolished or polished (will take longer) Cu
 – Contact: daniel.seal@cockcroft.ac.uk
• Any good samples could be given to Arturs for laser treatment at RTU
• Facility paper in progress
Thank you for listening