

The Pierre Auger Observatory: Cosmic Rays at the Highest Energies

Jeff Allen (New York University)

For the Pierre Auger Collaboration

Cosmic Rays

- Fairly constant power law spectrum over 10 decades in energy
- Extremely low flux at the highest energies, ~1 per km2 per century
- Open questions
 - Galactic to extra-galactic transition
 - Sources
 - Composition

Cosmic Rays

- Fairly constant power law spectrum over 10 decades in energy
- Extremely low flux at the highest energies, ~1 per km2 per century
- Open questions
 - Galactic to extra-galactic transition
 - Sources
 - Composition

The Pierre Auger Observatory

- Largest detector in operation
- 490 scientists from 18 countries

Argentina, Australia, Bolivia, Brazil, Croatia, the Czech Republic, France, Germany, Italy, Mexico, Netherlands, Poland, Portugal, Slovenia, Spain, the United Kingdom, the United States, and Vietnam.

Surface Array (SD)

- High energy air showers leave large footprint on the ground
- 1600 water Cherenkov tanks with 1.5 km spacing
 - Each detector self calibrates and triggers
- Fully efficient around 3 EeV
- Angular reconstruction from GPS timing
 - < 1° at high energies</p>

Fluorescence Telescopes (FD)

- Charged particles ionize the atmosphere
- Resulting fluorescence light viewed by 24 telescopes at four sites
- Provides nearly calorimetric energy reconstruction

Hybrid Detector

- Hybrid technique makes Auger truly unique
- Air showers detected with both techniques are some of the best constrained showers detected

Science Goals

- Measure the flux of UHECR (E > 1EeV)
- Determine sources and nature of acceleration
 - Correlation seen in the arrival directions with AGN within 70 Mpc
- Study composition of UHECR
 - Proton, iron, intermediate?
- Look for air showers generated by all types of particles
 - Photons
 - Neutrinos
 - Exotics?

Energy Spectrum

- Ankle seen at 4 EeV
 - Possible location of galactic to extra-galactic transition
- High energy cutoff seen above 30 EeV
 - Spectral index drops to -4.3
 - GZK? Photodisintegration?
- Current energy spectrum can be fit by iron or proton

X_{Max}: Composition

- Depth of shower maximum (X_{Max}) sensitive to the composition
 - Both mean and variance are useful tools in determining the mass and evolution
- Current results point to increasingly heavy mass, from MC simulations

X_{Max}: Comparison to Models

- Quantitative interpretation is possible with the use of MC simulations and models of the high-energy interactions
 - Rely on extrapolations from accelerator data (Take with grain of salt)
- Taking MC predictions at face value, results consistent within measurement and theoretical uncertainty

Beyond Cosmic Rays

- Auger detects air showers.
 - Can be initiated by photons, neutrinos, or even exotic particles!

Neutrinos

- Large target mass provided by the earth
 - "Earth Skimming" tau-neutrinos can interact in near the surface of the earth
 - Decaying tau initiates an EM rich shower at nearly horizontal showers

Neutrinos

- Decaying tau initiates an EM rich shower at nearly horizontal angles
 - EM component can be detected through the FADC trace of surface detectors
- Horizontal showers will produce elongated footprints
 - Time difference between neighboring tanks ~light travel time

No candidates observed, but limit is competitive in the field

Photons

- Photons can be seen in SD as muon poor showers
- Can be seen in FD as showers with deep X_{Max}
- Separation not perfect in either case
 - Candidates exist
 - Limits the photon fraction
- Current limit rules out some exotic models of UHECR creation

Ig(E/eV)

19.6

Conclusion

- Construction of Auger completed in 2008, but work not done
 - AMIGA and HEAT are low energy extensions, take Auger down to the second knee
 - Radio R&D could provide a FD type detector with ~100% duty cycle
- Composition of cosmic rays
 - Taking models at face value, suggests mixed composition around 1 EeV transitioning to heavier elements
- Large air shower observatories are useful beyond cosmic rays
 - Neutrino limits competitive with dedicated neutrino experiments
 - Photon limits can rule out several "exotic" models of UHECR creation