ISOCURVATURE AND NON-GAUSSIANITY FROM GRAVITATIONAL PARTICLE PRODUCTION

HOJIN YOO WORK WITH D.J.H. CHUNG UW-MADISON

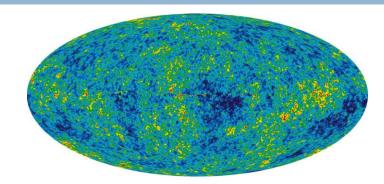
May 9th, Pheno 2011

Outline

- Introduction
 - Non-Gaussianity
 - $\Box f_{\rm NL}$
- Our scenario: The Super Heavy Dark Matter Model
- Conditions to be a viable model
 - Adiabaticity
 - Non-Gaussianity
- The Parameter Space of the SDM Model

The CMB temperature fluctuation

- □ Isotropic
- □ T = 2.725 K
- Temperature fluctuation
 - Small
 - Adiabatic
 - Scale-invariant
 - Nearly Gaussian

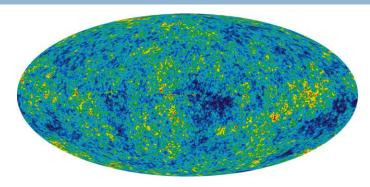


From the 5 years WMAP data

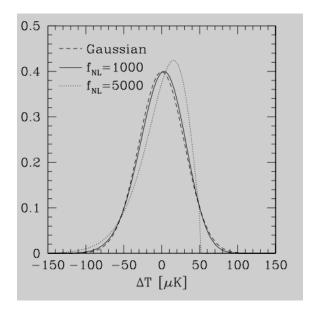
The CMB temperature fluctuation

- □ Isotropic
- □ T = 2.725 K
- Temperature fluctuation
 - Small
 - Adiabatic
 - Scale-invariant
 - Nearly Gaussian

$$\zeta = \zeta_g + \frac{3}{5} f_{\rm NL} \left(\zeta_g^2 - \left\langle \zeta_g^2 \right\rangle \right) \quad \text{(Local-type)}$$



From the 5 years WMAP data



Non-Gaussianities and $f_{\rm NL}$

- The temperature fluctuation is nearly Gaussian, ...
- Any clear signals of "Primordial" non-Gaussianities are important for discovering new physics.
 - **Bispectrum** -> $f_{\rm NL}$, Trispectrum -> $\tau_{\rm NL}$, ...
- For example, "simple" inflation models cannot generate large non-Gaussianities. (Maldacena, 2003) (Seery et al., 2005)
 - Einstein GR, Single field, Bunch-Davies vacuum, Slow-roll
 - In the squeezed configuration,
 - $f_{\rm NL} \sim O(1 n_s) << 1$

5

*k*₁ k_3

SDM Isocuvature from Particle Production

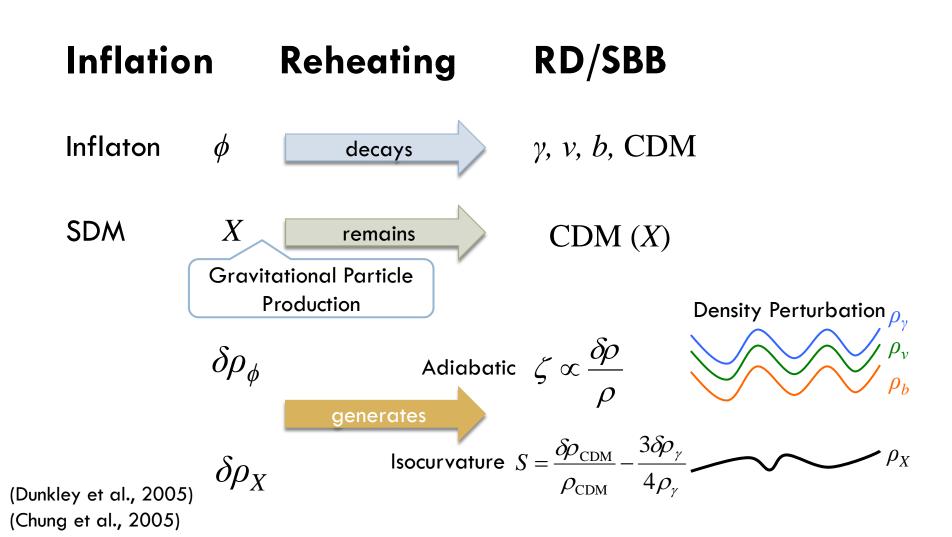
- □ The slow-roll inflation is effectively driven by the inflaton ϕ and ζ originates from the vacuum fluctuation of it during the inflation.
- A massive free scalar field X, super-heavy dark matter(SDM) oscillating around zero value gives rise to isocurvature by gravitational particle production.

No interaction other than gravitational interaction

Minimally coupled to gravity

Large non-Gaussianity maybe obtained from the isocurvature perturbation.

SDM Isocuvature Model



Adiabaticity and Correlation < $\zeta S >$

□ From observation (Komatsu et al., 2010)
Adiabaticity
$$\alpha \equiv \frac{\Delta_{S}}{\Delta_{\zeta} + \Delta_{S}} \sim \frac{\langle SS \rangle}{\langle \zeta\zeta \rangle} <<1$$
 $\alpha \leq \begin{cases} 0.07 & \text{for uncorrelated} (\langle \zeta S \rangle = 0) \\ 0.004 & \text{for fully - correlated} (\langle \zeta S \rangle = -1) \end{cases}$

□ Correlation $\langle \zeta S \rangle$ of the SDM Model?

=> Requires consistent renormalization with GR

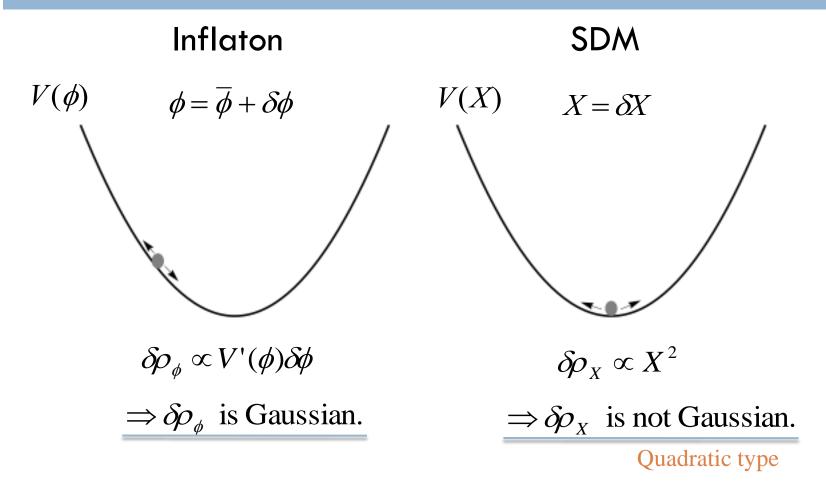
Scale separation:
$$k_{\text{CMB}}$$
 vs. $k_{\text{p.p.}}$...

Particle Production under ζ



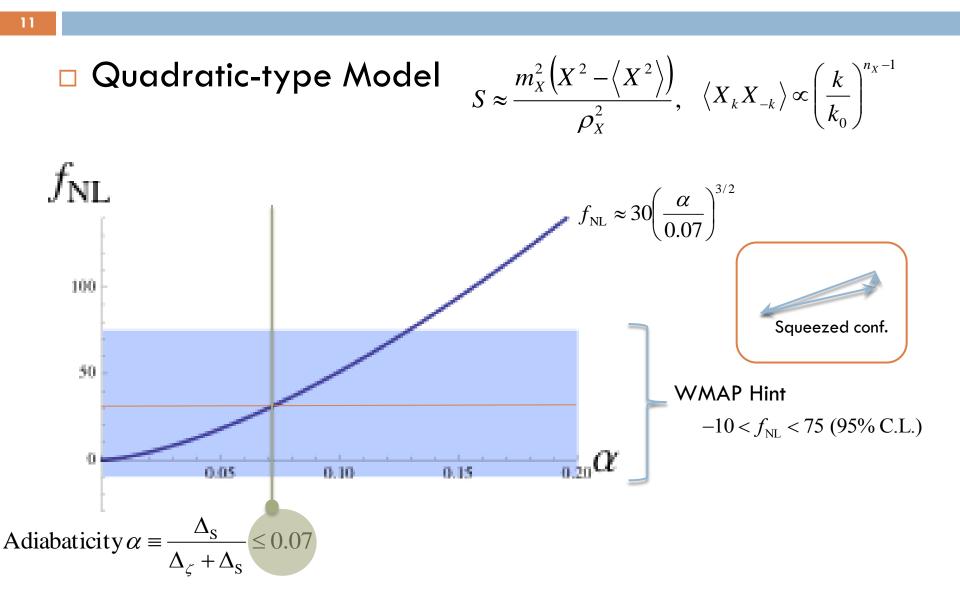
- When particle production is considered:
 - the metric perturbation is nearly homogeneous.
 - ζ is almost constant.
 - $\Rightarrow \zeta$ and S are decoupled! $<\zeta S>=0$

Possibility of Large non-Gaussianity



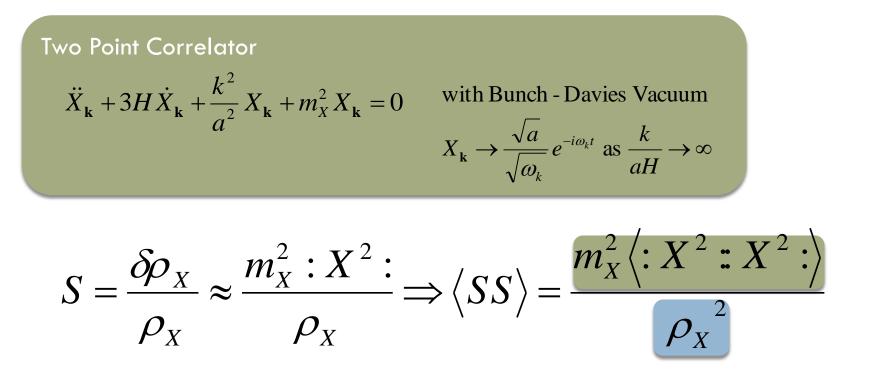
 $\delta \phi$, X becomes classical Gaussian random variables after the horizon exit.

Non-Gaussianity by SDM Isocurvature



Explicit Calculation of S

12

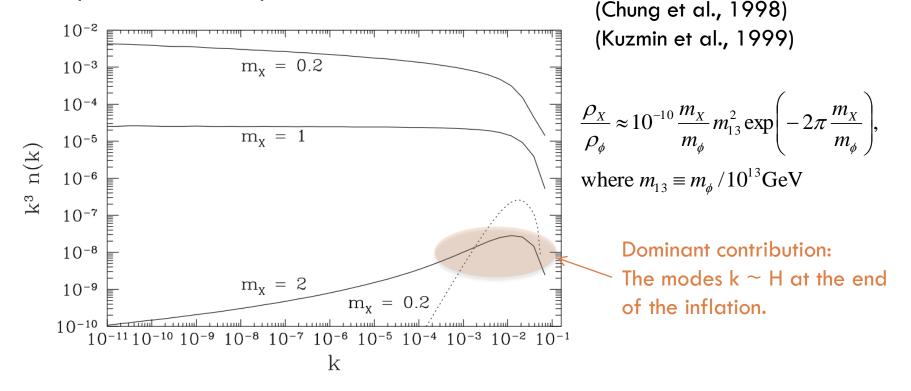


Energy Density by Gravitational Particle Production

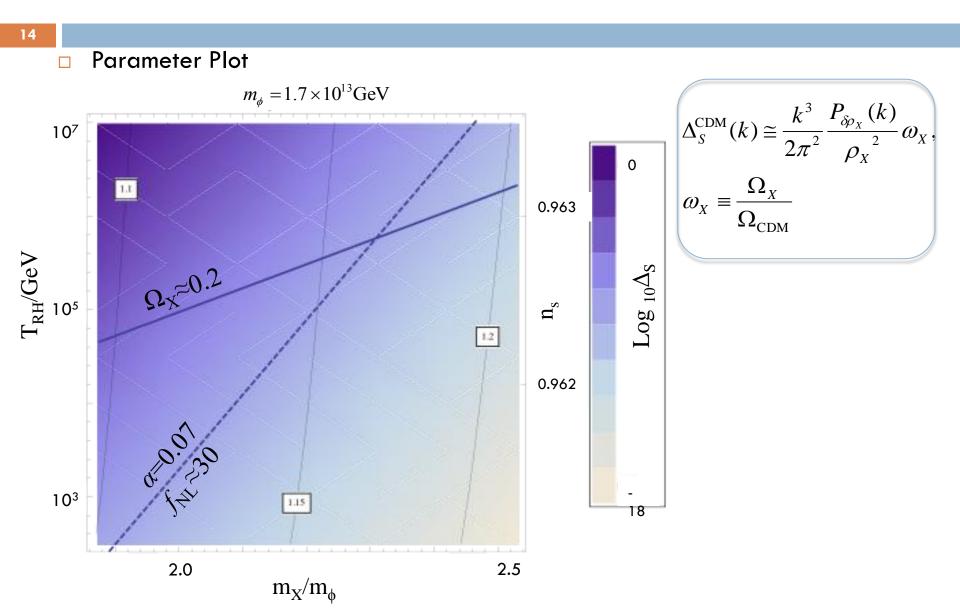
Gravitational Particle Production

13

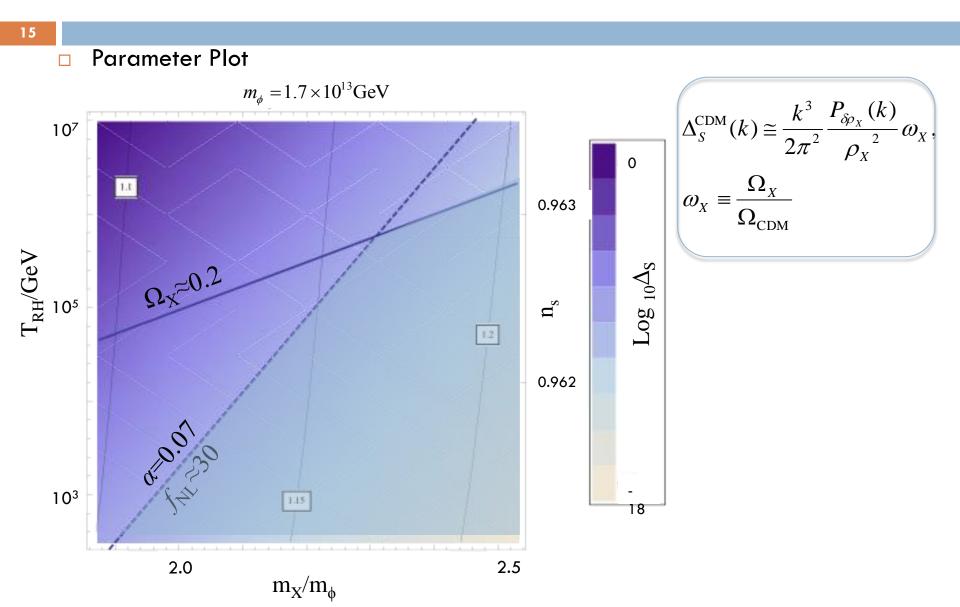
- The number density is dependent on the model of the inflation and how it ends.
- □ In particular, the $m^2\phi^2$ model



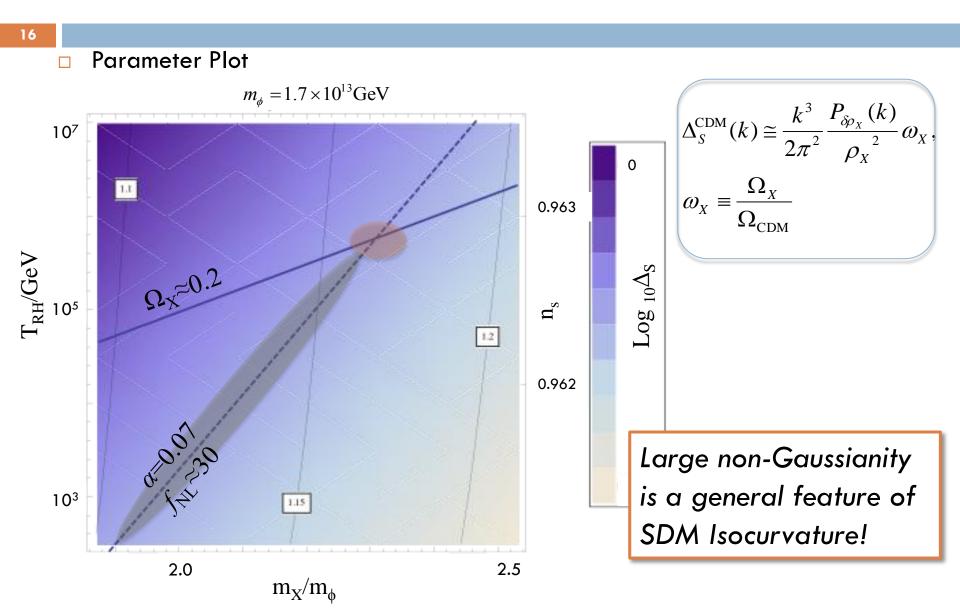
Isocurvature Powerspectrum



Isocurvature Powerspectrum



Isocurvature Powerspectrum



Conclusion

- Isocurvature Perturbation seeded by gravitational particle production is a uncorrelated-type quadratic model.
- In general, it can generate large non-gaussianity, f_{NL} ~ 30 for the squeezed configuration
 if X solely contributes CDM, m_X ~ 2.3 m_{\u03c6} (m_X ~ H_e).
 if X is a component of CDM, m_X < 2.3 m_{\u03c6}.
 T_{RH} < 10⁶ GeV

 \Box If $m_X > 2.3 m_{\phi}$, not observable in CMB.