Isospin Violating Dark Matter

David Sanford

Work with J.L. Feng, J. Kumar, and D. Marfatia UC Irvine

Pheno 2011 - Tuesday May 10, 2011

Current State of Light Dark Matter

- Great recent interest in light dark matter
- Major inconsistencies between experimental results
 - DAMA and CoGeNT regions do not agree
 - XENON10/XENON100 rule out DAMA and CoGeNT
 - CDMS-Ge (Soudan) rules out much of CoGeNT and all of DAMA
- Both DAMA and CoGeNT report annual modulation signals

Possible Explanations of the Discrepancy

Many theories have been put forward

- Inelastic dark matter
 - Tucker-Smith and Weiner (2001)
- Details of L_{eff} in liquid xenon at low recoil energy
 - ► Collar and McKinsey (2010)
- Channeling in Nal at DAMA
 - Bernabei et. al. [DAMA] (2007); Bozorgnia, Gelmini, Gondolo (2010)

We propose to rescind the assumption of isospin conservation

- Unfounded theoretical assumption
- Simple resolution of several discrepancies
- Also considered by Chang, Liu, Pierce, Weiner, Yavin (2010)

- DM-nucleus scattering is coherent
- The single atom SI scattering cross-section is

$$\sigma_A \propto [f_p Z + f_n (A - Z)]^2$$

 $\propto f_p^2 A^2 \qquad (f_p = f_n)$

• Well-known A^2 enhancement for $(f_p = f_n)$

Z: atomic number *A*: number of nucleons f_p : coupling to protons f_n : coupling to neutrons

- DM-nucleus scattering is coherent
- The single atom SI scattering cross-section is

$$\sigma_A \propto [f_p Z + f_n (A - Z)]^2$$

 $\propto f_p^2 A^2 \qquad (f_p = f_n)$

• Well-known A^2 enhancement for $(f_p = f_n)$

Z: atomic number A: number of nucleons f_p : coupling to protons f_n : coupling to neutrons

▶ For $f_p \neq f_n$, this result must be altered

- DM-nucleus scattering is coherent
- The single atom SI scattering cross-section is

$$\sigma_A \propto [f_p Z + f_n (A - Z)]^2$$

 $\propto f_p^2 A^2 \qquad (f_p = f_n)$

• Well-known A^2 enhancement for $(f_p = f_n)$

Z: atomic number *A*: number of nucleons f_p : coupling to protons f_n : coupling to neutrons

- ▶ For $f_p \neq f_n$, this result must be altered
- ▶ In fact, for $f_n/f_p = -\frac{Z}{A-Z}$, σ_A vanishes from completely destructive interference

- DM-nucleus scattering is coherent
- The single atom SI scattering cross-section is

$$\sigma_A \propto [f_p Z + f_n (A - Z)]^2$$

 $\propto f_p^2 A^2 \qquad (f_p = f_n)$

• Well-known A^2 enhancement for $(f_p = f_n)$

Z: atomic number A: number of nucleons f_p : coupling to protons f_n : coupling to neutrons

- ▶ For $f_p \neq f_n$, this result must be altered
- ▶ In fact, for $f_n/f_p = -\frac{Z}{A-Z}$, σ_A vanishes from completely destructive interference
- ▶ $\frac{Z}{A-Z}$ decreases for higher Z isotopes

Dark Matter Experiments and Proton/Neutron Ratio $\frac{Z}{A-7}$ decreases for higher Z

National Nuclear Data Center

Stable isotopes of Xenon (Z = 54):

Α	128	129	130	131	132	134	136
Abundance (%)	1.9	26.4	4.1	21.2	26.9	10.4	8.9
$\sigma_A = 0$ at $f_n/f_p =$				-0.70			

Stable isotopes of Xenon (Z = 54):

Α	128	129	130	131	132	134	136
A Abundance (%)	1.9	26.4	4.1	21.2	26.9	10.4	8.9
$\sigma_A = 0$ at $f_n/f_p =$	-0.73	-0.72	-0.71	-0.70	-0.69	-0.675	-0.66

Stable isotopes of Xenon (Z = 54):

Α	128	129	130	131	132	134	136
Abundance (%)	1.9	26.4	4.1	21.2	26.9	10.4	8.9
$\sigma_A = 0$ at $f_n/f_p =$	-0.73	-0.72	-0.71	-0.70	-0.69	-0.675	-0.66

 Cannot have completely destructive interference for more than one isotope of an element

Stable isotopes of Xenon (Z = 54):

Α	128	129	130	131	132	134	136
Abundance (%) $[\eta_i]$	1.9	26.4	4.1	21.2	26.9	10.4	8.9
$\sigma_A = 0$ at $f_n/f_p =$	-0.73	-0.72	-0.71	-0.70	-0.69	-0.675	-0.66

- Cannot have completely destructive interference for more than one isotope of an element
- We define the "per-nucleon cross-section" measured by experiments

$$\sigma_N^Z = \sigma_p \frac{\sum_i \frac{\eta_i \mu_{A_i}^2 [Z + (A_i - Z)f_n/f_p]^2}{\sum_i \frac{\eta_i \mu_{A_i}^2 A_i^2}}$$

 σ_p : DM-proton cross-section η_i : Relative abundance of an isotope μ_{A_i} : Reduced nucleon-DM mass for an isotope

Light DM for $f_n/f_p = 1$

$$f_n/f_p=1$$

Light DM for $f_n/f_p = 1$ and $f_n/f_p = -0.7$

 $f_n/f_p=1$

 $f_n/f_p = -0.7$

Can we rule out DAMA/CoGeNT with XENON?

Can we rule out DAMA/CoGeNT with XENON? YES

Due to the presence of multiple isotopes, a sufficiently tight XENON bound can rule out both CoGeNT and DAMA

Can we rule out DAMA/CoGeNT with XENON? YES

Due to the presence of multiple isotopes, a sufficiently tight XENON bound can rule out both CoGeNT and DAMA

How tight does the XENON constraint have to be?

Scan over f_n/f_p to maximize the apparent discrepancy between the values σ_N^Z for two elements

Can we rule out DAMA/CoGeNT with XENON? YES

Due to the presence of multiple isotopes, a sufficiently tight XENON bound can rule out both CoGeNT and DAMA

How tight does the XENON constraint have to be?

- Scan over f_n/f_p to maximize the apparent discrepancy between the values σ_N^Z for two elements
- CoGeNT (Ge) can consistently exceed XENON100 bounds by a factor of 23.5
- DAMA (Na) can consistently exceed XENON100 bounds by a factor of 103.1

Maximum Enhancement of Cross-Sections Xe

1.0

23.5

172.4

Element (Z,A)

Xe (54, *)

Ge (32, *)

Si (14, *)

arbitrarily suppressed

Ca (20, *)	178.6	30.5	1.1	1.0	666.7	1.07	
W (74, *)	3.5	16.1	238.1	238.1	1.0	59.2	
Ne (10, *)	166.7	28.9	4.0	4.0	666.7	1.0	
I (53, 127)	1.9	5.7	147.1	147.1	18.0	36.4	
Cs (55, 133)	1.1	7.4	158.7	161.3	10.7	39.5	
O (8, 16)	181.8	31.5	1.1	1.1	714.3	1.1	
Na (11, 23)	103.1	13.2	9.7	10.3	416.7	2.8	
Ar (18, 40)	181.9	31.5	1.1	1.03	714.3	1.1	
▶ Maximum factor by which the reported σ_N^Z of elements							

listed in rows can exceed that of those listed in columns

Scattering off single-isotope elements can always be

Ge

8.9

1.0

30.2

Si

169.5

76.9

1.0

Ca

169.5

77.5

1.1

W

9.92

117.6

666.7

Ne

42.2

19.2

1.05

Quark-Level Realization

We desire a quark level realization of isospin-violation

- Provides a proof-of-concept
 - Already present in the MSSM, but not typically destructive
 - ► Cotta, Gainer, Hewett, Rizzo (2009)
- Required for comparison to other types of detection
 - Collider bounds
 - Spin-dependent direct detection
 - Indirect detection
- Isospin violation is found only in couplings to up and down quarks

Quark-Level Realization: WIMPless Models

$$W \supset \sum_{i} \left(\lambda_{q}^{i} \mathbf{X} Y_{q_{L}} q_{L}^{i} + \lambda_{u}^{i} \mathbf{X} Y_{u_{R}} u_{R}^{i} + \lambda_{d}^{i} \mathbf{X} Y_{d_{R}} d_{R}^{i} \right)$$

- SUSY model w/ DM (X) in a hidden sector
- GMSB provides naturally similar masses, providing the "WIMPless" miracle in the hidden sector
- X couples to SM through mediator Y and yukawa terms
- All quark/lepton couplings to vanish except those to up and down quarks for simplicity

Collider Constraints

- Collider single-jet searches constrain the operator XXqq̄
 - ► Goodman et. al. (2010); Bai, Fox, and Harnik (2010)
- There is no destructive intereference in collider searches, so bounds become much stronger

Collider Constraints

- Collider single-jet searches constrain the operator XXqq̄
 - ► Goodman et. al. (2010); Bai, Fox, and Harnik (2010)
- There is no destructive intereference in collider searches, so bounds become much stronger
- Coincident region still well within experimental bounds

$$\lambda_{L_1}\lambda_{R_u} \sim \pm 0.02$$

 $\lambda_{L_1}\lambda_{R_d} \sim \mp 0.02$

$$M_X = 8 \text{ GeV}, M_Y = 400 \text{ GeV}$$

Conclusion

- Dark matter may generically couple in a way that violates isospin
- ▶ For $f_n/f_p \sim -0.7$, CoGeNT and DAMA results agree for a significant mass range and are partially unbounded by XENON
- The possibility of IVDM motivates the use of a variety of materials in experimental searches
- A WIMPless (or other) realization provides for consistent constraints on IVDM from other sources

Extra Slides: Isotope Abundances

Xe	Ge	Si	Ca	W	Ne
128 (1.9)	70 (21.2)	28 (92.2)	40 (96.9)	182 (26.5)	20 (90.5)
129 (26.4)	72 (27.7)	29 (4.7)	44 (2.1)	183 (14.3)	22 (9.3)
130 (4.1)	73 (7.7)	30 (3.1)		184 (30.6)	
131 (21.2)	74 (35.9)			186 (28.4)	
132 (26.9)	76 (7.4)				
134 (10.4)					
136 (8.9)					