DM-Ice A Search for Dark Matter at the South Pole

Reina Maruyama University of Wisconsin - Madison

Phenomenology 2011 Symposium Union South, Madison, WI May 9, 2011

Current Status of Bounds on Dark Matter from Terrestrial experiments

Spin-Independent

Spin-Dependent

One claim for discovery: DAMA

and what about CoGeNT?

What is going on?

• Experimental issues?

- These experiments are extremely challenging. We need to understand our detectors and uncertainties on quenching factors, energy scale, threshold effects, backgrounds, etc. etc....
- Build bigger and better experiments or look for annual / daily modulation.
- Modify astrophysics?
 - f(v)? v_{esc}? v₀? co-rotating?
- More exotic particle?
 - spin-dependent, inelastic scattering, momentum-dependent scattering...
- Proposed solution: look for annual modulation with Nal in the Southern Hemisphere.

What is going on?

• Experimental

- These expendence of the expension of the exp
- Build bigge
- Modify astrop
 - f(v)? v_{esc}?
- More exotic p
 spin-deper

to understand our gy scale, threshold

daily modulation.

dent scattering...

 Proposed solution: look for annual modulation with Nal in the Southern Hemisphere.
 South Pole

Why South Pole?

- The phase of the dark matter modulation is the same.
- Many environmental variations are either opposite in phase (e.g. muon rate) or absent (e.g. temperature, neutrons).
- > 2500 m.w.e. of overburden with clean ice.
 - Clean ice \rightarrow no lead/copper shielding necessary. No radons.
 - Ice \rightarrow neutron moderator.
 - Ice as an insulator \rightarrow No temperature modulation.
- Existing infrastructure
 - NSF-run Amundsen-Scott South Pole Station
 - Ice drilling down to 2500 m developed by IceCube
 - Muon veto by IceCube/DeepCore
 - Infrastructure for construction, signal readout, and remote operation

South Pole Station

runway

IceCube

IceCube Control Lab

South Pole South Pole Station

AMANDA SPT, BICEP II

Requirements for Testing DAMA

 If DAMA signal is there, we can do a 5-sigma measurement in 2 years with 250 kg and comparable background as DAMA.

		2 NAIAD	NAIAD size	DAMA size
	Years	17.0 kg	44.5 kg	250 kg
NAIAD background	1	0.45	0.72	1.71
	3	0.77	1.25	2.96
	5	1.00	1.61	3.82
	7	1.18	1.91	4.52
50% NAIAD background	1	0.63	1.02	2.42
	3	1.09	1.77	4.18
	5	1.41	2.28	5.40
	7	1.67	2.70	6.39
Double DAMA background	1	0.85	1.37	3.26
	3	1.47	2.38	5.64
	5	1.90	3.07	7.29
	7	2 25	3 64	8.62
DAMA background	1	1.20	1.94	4.61
	3	2.08	3.37	7.98
	5	2.69	4.35	10.31
	7	3.18	5.14	12.19
1/10 DAMA background	1	3.80	6.15	14.57
	3	6.58	10.65	25.24
	5	8.50	13.75	32.59
	7	10.06	16.27	38.56

5-σ detection of DAMA signal with a 250-kg / 2-year running time (2 - 4 keV)

Pheno 2011 - May 9, 2011

DM-Ice Concept

38 Nal Crystals (each vessel contains 19).

- 95.6 mm Diameter
- 250 mm Long
- 6.5 kg each
- 2 PMTs each

Instrument with few "DOMs" externally for veto

50 - 60 mm Copper Radial Shield -

SS External Pressure Vessel Shell

- 65 cm (25.6 inch) Outer Diameter
- 1.7 m (67 inch) Length

250 kg Nal

1500 kg total including pressure vessel

Additional details:

- Communication cable to surface similar to IceCube
- PMTs outside the vessel for self-contained muon veto

x7

Overburden at -2500 m (2200 m.w.e.)

- ~85 muons/m²/day at bottom of IceCube
- IceCube/DeepCore veto reduces rate by ~1-2 orders of magnitude.
- Ice is a neutron moderator

Radiopurity of Antarctic Ice

- Measurements from ice cores at Vostok.
- Absorption and scattering lengths measured by AMANDA/ lceCube
- -2500 m at South Pole is ~100,000 years old
- Most of the impurities come from volcanic ash, < 0.1 ppm
- Radioactive contaminants in ice:
 - U ~ ppt
 - Th ~ ppt
 - K ~ ppb

DM-lce prototype deployed in 2010

Detectors:

 Two 8.5 kg Nal detectors from NAIAD

Goals:

- Assess the feasibility of deploying Nal(Tl) crystals in the Antarctic Ice for a dark matter detector
- Establish the radiopurity of the antarctic ice / hole ice
- Explore the capability of IceCube to veto muons

Installation in Dec. 2010

DM-Ice Feasibility Study Detector → 36 cm (14") **DOM 59** 2 IceCube mainboards + HV control boards 5" ETL PMTs from NAIAD (2) **DOM 60** 1.0 m 35 m NAIAD Nal Crystal extension (8.5 kg) cable quartz light guides (2) -7 m PTFE light reflectors (2) **Stainless Steel** Pressure Vessel **DM-Ice**

DM-Ice Electronics in ICL

ICL "beer can" with string string cables

Pheno 2011 - May 9, 2011

Current Status & Future Outlook

- DM-Ice prototype (17 kg) deployed in December 2010
 - Currently taking data, tweaking operating parameters
 - data transmitted over satellite
 - optimizing analysis, background studies with radio-assay & monte carlo simulation
- >250-kg scale detector under consideration
 - R&D for low background crystals
 - Iow background PMTs, pressure vessel
 - Calibration
 - Optimize (simplified) daq board and electronics
 - IceCube drill moth-balled at SP

DM-Ice

- UW-Madison
 - Francis Halzen*, Karsten Heeger, Albrecht Karle*, Reina Maruyama*, Walter Pettus, Antonia Hubbard*, Bethany Reilly, Benjamin Broerman
- University of Sheffield
 - Neil Spooner, Vitaly Kudryavtsev, Dan Walker, Sean Paling, Matt Robinson
- University of Alberta
 - Darren Grant*
- Penn State
 - Doug Cowen*
- Fermilab
 - Lauren Hsu
- University of Stockholm
 - Seon-Hee Seo*

