

S. Stone

B Physics in the LHC Era

Physics Beyond the Standard Model

- Baryogensis: From current measurements can only generate (n_B-n_B)/n_γ =~10⁻²⁰ but ~6x10⁻¹⁰ is needed. Thus New Physics must exist
- Dark Matter

Gravitational lensing

 Hierarchy Problem: We don't understand how we get from the Planck scale of Energy ~10¹⁹ GeV to the Electroweak Scale ~100 GeV without "fine tuning" quantum corrections

- Expect New Physics will be seen at LHC
- However, it will be difficult to characterize this physics. How the new particles interfere virtually in the decays of b's (& c's) with the SM W's & Z's can tell us a great deal about their nature
- NP models must conform with severe constraints from flavor such as $\mathcal{C}(b \rightarrow s\gamma)$

- In SM charge -1/3 quarks (d, s, b) are mixed
- Described by CKM matrix (also v are mixed)
- $V_{\left(\frac{2}{3},-\frac{1}{3}\right)} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$ $= \begin{pmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$
 - $\lambda = 0.225$, A=0.8, constraints on $\rho \& \eta$
 - These are fundamental constants in SM

Limits on New Physics

It is oft said that we have not seen New Physics, yet what we observe is the sum of Standard Model + New Physics. How to set limits on NP?

can read this

A TEACHER

Assume that tree level diagrams are dominated by SM and loop diagrams could contain NP

What are limits on NP from quark decays?

 Tree diagrams are unlikely to be affected by physics beyond the Standard Model

CP Violation in B° & K° Only

 Absorptive (Imaginary) of mixing diagram should be sensitive to New Physics. Lets compare

7

Madison, May 9, 2011

But consistency is only at the 5% level

Same for B_s – CP violation in J/ψφ(not including D0 A_{sl}) ⇒limits on NP are not so strong

Limits on New Physics From B° Mixing

- Is there NP in B°-B° mixing?
- Assume NP in tree decays is negligible, so no NP in |V_{ij}|, γ from B⁻→D^oK⁻.
- Allow NP in Δ m, weak phases, A_{SL}, & $\Delta\Gamma$.

Limits on New Physics From B_S Mixing

- Similarly for B_S ■ One CP Violation measurement using $B_S \rightarrow J/\psi \phi$
- Here again SM is only at 5% c.l.
- Much more room for NP due to
 less precise
 measurements

New Physics Models

There is, in fact, still lots of room for "generic" NP

//

11

11

- What do specific models predict?
 - Supersymmetry: many, many different models
 - Extra Dimensions:
 - Little Higgs:
 - Left-Right symmetric models "
 - 4th Generation models
- NP must affect every process; the amount tells us what the NP is ("DNA footprint")
- Many interesting cases exist

- In 2< η <6, 89.6 µb Tevatron frag \Rightarrow 338±24±58 µb
- Also measured charm cross-section, ~20x b

B_s Semileptonic Decays

First step in measuring structure of B_s semileptonic decays, fractions to D_s, D_s*, D_sJ, etc..

See Carson's parallel session talk

CMS σ from b \rightarrow X $\mu\nu$

In all cases generally good agreement with NLO calculations, within large errors

See parallel session talk of S. De Visscher

Progress on "Key" Measurements

Many NP models possible, not just Super-Sym

It you read this Can A TEACHER

$B_{s} \rightarrow \mu^{+}\mu^{-}Current Status$

Upper limits at 90% c.l.

$B_s \rightarrow \mu^+ \mu^-$ Short Term Projection

Madison, May 9, 2011

can read this If you

A TEACHER

CP Violation CPV in appears in the difference between B→f & B→f; for CP eigenstates f=f

CP asymmetry, e.g. B^o decays is given by

$$A_{CP} = \frac{\Gamma(\overline{B}^0 \to f) - \Gamma(B^0 \to f)}{\Gamma(\overline{B}^0 \to f) + \Gamma(B^0 \to f)} = \sin(2\Psi)\sin(\Delta mt)$$

- Ψ depends on decay mode, e.g. for B° $\rightarrow J/\psi K_s$, $\Psi = \beta$.
- Need two interfering amplitudes one can be provided by mixing

can read this

- LHCb: $\Delta m_s = 17.63 \pm 0.11 \pm 0.04 \text{ ps}^{-1}$
- CDF: ∆m_s = 17.77 ± 0.10 ± 0.07 ps⁻¹ (PRL 97, 242003)

Now ready for time-dependent CPV in B_s Madison, May 9, 2011
26

• B_s is complicated because
$$\Delta\Gamma \neq 0$$

• B_s is complicated because $\Delta\Gamma \neq 0$
 $\Gamma_{\bar{B}_s \to f}(t) = \frac{N_f e^{-t/\tau(B_s)}}{4\tau(B_s)} \Big[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + S_f \sin(\Delta m_s t) - C_f \cos(\Delta m_s t) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \Big],$
 $\Gamma_{B_s \to f}(t) = \frac{N_f e^{-t/\tau(B_s)}}{4\tau(B_s)} \Big[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) - S_f \sin(\Delta m_s t) + C_f \cos(\Delta m_s t) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \Big],$

• Here $S_f = sin(2\beta_s)$, $C_f = 0$, $A_f^{\Delta\Gamma} = -cos(2\beta_s)$,

• $\beta_s = \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)$ in SM β_s =-0.018, thus a good place for NP to appear

■ J/ψ φ is not a CP eigenstate, so do ∠ analysis Madison, May 9, 2011 27

Figure 6: Angle definition: θ is the angle formed by the positive lepton (ℓ^+) and the z axis, in the J/ψ rest frame. The angle φ is the azimuthal angle of ℓ^+ in the same frame. In the ϕ meson rest frame, ψ is the angle between $\vec{p}(K^+)$ and $-\vec{p}(J/\psi)$. The definition is the same whether a B_s^0 or a \overline{B}_s^0 decays.

Signals: ATLAS & CMS

H you can read this

THANK

A TEACHED

LHCb ϕ_s Measurement

Confidence Level scan

can read this you

A TEACHER

• 1.2σ from SM Using opposite side flavor tagging only

Comparison with CDF/D0

	Signal yield (lumi)	$\phi^{\mathrm{J}\!/\psi\phi}_{\mathrm{s}}$ (rad)	Ref.
CDF	$6500 (5.2 \mathrm{pb}^{-1})$	$-0.54 \pm 0.50^{(*)}$	CDF Note 10206
DØ	3 400 (6.1 fb ⁻¹)	$-0.76^{+0.38}_{-0.36}$ (stat) ± 0.02 (syst)	DØ 6098-CONF

LHCb 860 (37 pb⁻¹) $-2.7 < \phi_s < -0.5$ @ 68% c.l.

Madison, May 9, 2011

If you read this

A TEACHER

1st Observation of $B_s \rightarrow J/\psi f_0(980)$ read this A TEACHE In $B_s \rightarrow J/\psi \phi$ there is the possibility of an S-wave contamination under the ϕ . If this existed it could

to measure ϕ_s without angular analysis $\frac{\Gamma(J/\psi f_0; f_0 \to \pi^+ \pi^-)}{\Gamma(J/\psi \phi; \phi \to K^+ K^-)} \approx 0.25$ Found by LHCb. m(J/ $\psi \pi^+\pi^-$) within 90 MeV of 980 MeV $m(\pi^+\pi^-)$ within 30 MeV of B_s mass LHCb LHCb 36 pb⁻¹ $35 - \sqrt{s} = 7$ TeV Data $\sqrt{s} = 7$ TeV Data $f_0(980)$ Bs MeV) Events/(5 MeV) Events / (15 20 5300 00 5400 m(μ⁺μ⁻π⁺π⁻) (MeV) 800 1000 1200 1400 5200 600 5500 $m(\pi^+\pi^-)$ (MeV) Confirmed by Belle & CDF Madison, May 9, 2011

manifest itself as a $0^+ \pi^+\pi^-$ system. [Stone & Zhang PRD

79, 074024 (2009)]. As a CP eigenstate could be used

y Projections

Important goal.

- Expect error on γ of 3-4 using a combination of DK and D_sK modes in current LHCb
- Desire error of 1°, to be pursued by LHCb Upgrade,& Super B factories

Madison, May 9, 2011

Measurement of γ using B⁻ \rightarrow D^oK⁻

- One of several ways to determine γ
- Uses several modes with different D^o decays into K⁻π⁺, K⁺π⁻ (doubly Cabibbo suppressed), K⁺K⁻, π⁺π⁻

See parallel session talk of Whithead

- Here $D^{o} \rightarrow K^{-}\pi^{+}$
- Can also use $B \rightarrow hh$ coupled with SU(3)

H you read this on read this A TEACHER ANN A TEACHER

CP Asymmetries

- Obvious CPV in both B_s & B^o
- Using loose cuts A_{CP}(B^o)=-0.074±0.033±0.008
 (HFAG: -0.098±0.012)
- Using tight cuts A_{CP}(B_s)=0.15±0.19±0.02

(CDF: 0.39±0.15±0.08 in 1 fb⁻¹)

These asymmetries are sensitive to new particles in loops

See parallel session talk of H Cliff

Measuring the angular asymmetries in B° \rightarrow K*° µ⁺µ⁻.
 Sensitive to the presence of new particles

H you can read this $B^{o} \rightarrow K^{*o} \mu^{+} \mu^{-} Results$ A TEACHER Belle has 250 events in 605 fb⁻¹, CDF 101 in 4.4 fb⁻¹ AFB **Α_{FB}(B⁰→ K^{•0}μ+μ⁻)** (**d**) Data 1.5 RELLE J/ψ V SM __@0.5 ∖ ▼ CDF $C_7 = -C_7^{SM}$ 0.5 0 -1 2 12 16 20 Δ 6 8 10 14 18 O -0.5 $q^2(GeV^2/c^2)$ 10 12 14 16 18 0 8

- Hint of NP, but lots more luminosity needed
- LHCb: First signal seen
 23±6 events, S/B = 5

Signals Seen in Other Key Modes

- Two examples
- 1st Observation of B_s→ $\overline{K}^{*o}K^{*o}$
- Branching ratio ≈2x10⁻⁵
- Will be used to measure
 CP violation in B_s gluonic
- Penguin modes

Future Acts

- LHCb Upgrade: run at 10³³ cm⁻²/s (x5), double trigger efficiency on purely hadronic final states
- Super B factories
- Time scales are on the order of 6 years

Conclusions

- B physics at the LHC is still a baby, perhaps we will reach adolescence this year
 - b cross-section has been measured & agree with expectations (with large errors)
 - fractions of b hadron species have been determined
- Well known decays have been seen, & LHCb has already observed new B_s decay modes
 B_s→D_{s2}*+(2573) X μν, J/ψ f_o(980), K*oK*o, DoK*o, ψ´φ
- We are ready to search for and limit New Physics with the 2011 data

ATLAS B σ's

Madison, May 9, 2011

H you read this on A TEACHED HANN A TEACHED

Extract B_s fractions

- Crucial to set absolute scale for B_s rates, since not given by e⁺e⁻ machines.
- Must correct for $B_s \rightarrow D^o K^+ X \mu \nu$, also $\Lambda_b \rightarrow D^o p X \mu \nu$ $f_s / (f_u + f_d) = 0.136 \pm 0.004^{+0.012}_{-0.011}$

can read this **B**_s fraction - hadronic A TEACHED

Also can use hadronic decays + theory ~35 pb⁻¹

 $\sqrt{s} = 7$ TeV LHCb Preliminary

Semileptonics: $f_s / f_d = 0.272 \pm 0.008^{+0.024}_{-0.022}$

Madison, May 9, 2011

H you

1st Observation of $\overline{B}_s \rightarrow D^o K^{*o}$

Exclusive B \rightarrow J/ ψ h

Channel	LHCb yield	LHCb "lifetime"(*) stat. and sys. (ps)	PDG (ps)
$B^+ \rightarrow J/\psi K^+$	6741 ± 85	$1.689 \pm 0.022 \pm 0.047$	1.638 ± 0.011
${ m B}^0 ightarrow { m J}\!/\!\psi { m K}^{st 0}$	2668 ± 58	$1.512 \pm 0.032 \pm 0.042$	1.525 ± 0.009
${ m B}^0 ightarrow { m J}\!/\!\psi { m K}^0_{ m S}$	838 ± 31	$1.558 \pm 0.056 \pm 0.022$	1.525 ± 0.009
${ m B_s^0} ightarrow { m J}\!/\!\psi \phi$	570 ± 24	$1.447 \pm 0.064 \pm 0.056$	1.477 ± 0.046
$\Lambda_b ightarrow { m J}\!/\!\psi \Lambda$	187 ± 16	$1.353 \pm 0.108 \pm 0.035$	$1.391\substack{+0.038\\-0.037}$

Madison, May 9, 2011

H you read this A TEACHED

THANK

This can only be done with the LHCb Upgrade

Upsilons too

 Accurate measurement of B-flight direction allows missing neutrino reconstruction

CP Violation in B_s

It you read this can A TEACHER

	Roadmap (36 pb ⁻¹)	LHCb (36 pb ⁻¹)	CDF 5.2 fb ⁻¹		
# J/ψφ	1050	836	6500		
$\sigma(\tau)$ (fs)	38	50	100		
OS tag power	6.00/	(2.2±0.8)%	(1.2±0.2)%		
SS tag power	0.2%	working on	(3.5±1.4)%		
Madison, May 9, 2011 58					

If you can read this CALL A TEACHER **Great Prospects in Charm** 40000 $D^{\pm} \rightarrow K^{+}K^{-}\pi^{+}$ $D_s^{\pm} \rightarrow K^+ K^- \pi^+$ Events / (6 MeV) D_s→KKπ LHCb 35000 Preliminary √s = 7 TeV Data 2010 LHCb About II/pb 30000F D*N 63402 ± 287 10³ Preliminary $D^+ \rightarrow KK\pi$ $D^+\sigma$ 7.0 ± 0.0 MeV/c² 25000 - D_s N 88553 ± 331 √s = 7 TeV Data $D_8^*\,\sigma ~~7.0\pm0.0~\text{MeV/c}^2$ 20000F 10² ~ 11 pb⁻¹ 15000 10000 10 5000 $M^{2}(KK)$ 2000 m_(K⁻K⁺π⁺) (MeV) 1850 1900 1950 1800 0.4 0.6 0.8 1.2 1.6 1.8 1.4 0.4 0.6 1.6 0.8 1.4 $M^2(K\pi)$ ر هوره هوره کاره 2⁵¹⁸⁰⁰ W ECC 1400 ECC 1200 D*, D⁰ \rightarrow KK in ~2 pb⁻¹ LHCb Preliminary √s = 7 TeV Data Events/ 1000 -1000 Events / (800 400 500 200F 0E 1800

140

145

1850

1900

m_{KK} (MeV/c²)

ου 155 160 m_{(KK)π_{elnu} - m_{KK} (MeV/c²)}

150

Madison, May 9, 2011

Need 50 fb⁻¹ to reduce errors below differences in SM - NP

Madison, May 9, 2011

Electroweak Physics

LHCb can make unique measurements of many important quantities

 W[±] & Z^o cross-sections at η > 2, allows access to precision PDF measurements necessary for precision W mass measurement. Data from 16 pb⁻¹

