Recent Results on SUSY and BSM searches from ATLAS and CMS

George Redlinger, Brookhaven National Laboratory

presented on behalf of the ATLAS and CMS collaborations at Pheno 2011, The University of Wisconsin at Madison

Outline

- Broad (and rapid) overview of BSM ("Exotics") and SUSY results from ATLAS and CMS from the 2010 data-taking
- Put priority on more recent results using the full 2010 dataset
- Grouped largely by experimental signature
 - **Resonances** (with some non-resonant stuff mixed in)
 - Non-resonant Exotics
 - SUSY

I will be broad but shallow. Please see the parallel session talks for details.

2010 data-taking

Peak stable luminosity: ~2 x 10³² cm⁻² s⁻¹

Both experiments end up with approx 35-40 pb⁻¹ useable for most 2010 physics results

Leptonic/photonic resonances

Signature	ATLAS	CMS	Example
ℓ⁺ℓ⁻ (ℓ=e,µ)	arXiv:1103.6218	arXiv:1103.0981	Ζ'
ℓv (ℓ=e,μ)	arXiv:1103.1391	arXiv:1103.0030 (µ), arXiv:1012.5945 (e)	W'
eµ	arXiv:1103.5559		$RPV\tilde{v}_{_{T}}$
ℓ⁺ℓ⁻γ (ℓ=e,μ)		EXO10016 (plots only)	e*, μ*
muon jets		EXO11013 (plots only)	"dark photon"
ΥY	ATL-CONF- 2011-044	EXO10019 (plots only)	RS graviton

l⁺l⁻ resonance search

Electrons

1000

Muons

1000

lv resonance search

Bump hunt in transverse mass of isolated, high p_T lepton and MET

	ATLAS	CMS
p _⊤ cut (e)	25 GeV	30 GeV
$p_{_{T}}$ cut (µ)	25 GeV	25 GeV
η cut (e)	2.47(excl. [1.37,1.52])	2.5(excl. [1.442,1.56])
η cut (μ)	1.05	2.1

eµ resonance search

Events / 50 GeV

10

10³

10²

10

1

10⁻¹

10⁻²

ATLAS

s = 7 TeV

 $Ldt = 35 \text{ pb}^{-1}$

Data 20⁻

Ζ/γ →ττ

Top

Total Bkg.

WW/WZ

••••• \tilde{v}_{r} (650 GeV)

- Z'(700 GeV)

Bump search in invariant mass of isolated e and μ

Require exactly one e and one μ , both with pt > 20 GeV and isolated.

 $|\eta| < 2.47$ excl. [1.37,1.52] $|\eta| < 2.4$

l(lγ) resonance search

4-fermion contact interaction

Bump hunt in invariant mass of lepton+photon in $\ell \ell \gamma$ events

 $p_{_{T}} > 20(e), 25(\mu), 20(\gamma)$ $\Delta R(\gamma, \ell) > 0.5$

95% CL mass limits (in GeV) on ℓ^* , for $\Lambda = 2$ TeV

Electron	760
Muon	785

yy resonances

m_{γγ} [GeV]

Cross section limits

Bump hunt in γγ mass (at high mass!)

ATLAS: ≥ 2 "loose" photons, E_T > 25, |η| < 2.37 (exc. [1.37,1.52])

95% CL mass limits on RS graviton GeV)

k/M _{pl}	ATLAS	CMS
0.01	-	368
0.02	545	-
0.1	920	952

Approaching the most stringent Tevatron limits

× BR(G→γγ) [pb]

ь

0.1

ሰኪ

k/M _{pl}	$\begin{array}{c} \text{D0} \ (G \rightarrow \gamma \gamma \\ \text{+} \ G \rightarrow ee) \end{array}$	$\begin{array}{c} CDF \ (G \rightarrow \\ \gamma \gamma) \end{array}$
0.01	560	472
0.1	1050	976

300 400 500 600 700 800 900 1000 1100 1200 M_{Graviton}

Hadronic resonances

Signature	ATLAS	CMS	Example
dijet mass	arXiv:1103.3864	2.9 pb ⁻¹ : PRL105, 211801	q*
dijet angular variables	arXiv:1103.3864	arXiv:1102.2020	q*, contact interaction
multijets		EXO11001 (plots only)	RPV SUSY gluino
ttbar (ł+jets) resonance		CMS-PAS-TOP-10-007	$Z' \rightarrow ttbar$

dijet mass resonance

dijet angular distributions

(+0.5)

(+0.4)

(+0.3)

(+0.25)

16

 χ_{dijet}

Lepton+jet resonances

Signature	ATLAS	CMS	Example	
ejej	arXiv.1104.4481	arXiv:1012.4031	LQ(1)	
ejvj	arXiv:1104.4481	EXO10006 (plots only)	LQ(1)	
µjµj	arXiv:1104.4481	arXiv:1012.4033	LQ(2)	
μjvj	arXiv:1104.4481		LQ(2)	
WqWq→ ℓvqℓvq	ATL-CONF-2011- 022		heavy quark	

LQ(1) searches

Cuts optimized for each LQ mass hypo. (CMS doesn't use M_{LQ} as discriminant)

 $S_{\rm T}^\ell = p_{\rm T}^{\ell_1} + p_{\rm T}^{\ell_2} + p_{\rm T}^{{\rm j}_1} + p_{\rm T}^{{\rm j}_2}$

95% CL mass limits (GeV) of events \times (100.0)/(bin width) on LQ1. (eejj+evjj combined) 10 β **ATLAS** CMS D0 1Ē Number 6 0.1 255 0.5 319 340 284 10^{-2} 1.0 376 384 299 $\beta \equiv BR(LO \rightarrow eq)$

LQ(2) searches

Data, 34.0 pb⁻¹

Other backgrounds

600

700

800 $S_{T}(GeV)$

.....

 $\frac{1}{2}$ Z/ γ^* + jets

tt

500

Cuts optimized for each LQ mass hypo. (CMS doesn't use M_{10} as discriminant)

β	ATLAS	CMS (µµjj)	D0
0.1	-	-	185
0.5	362	~290	270
1.0	422	394	316

Data 2010 (\s=7 TeV)

15

$\beta \equiv BR(LQ \rightarrow \mu q)$

$QQ \rightarrow WqWq \rightarrow \ell vq\ell vq$

NEvts

Events with exactly 2 OS leptons and at least 2 jets

MET > 40

Z mass veto (if same flavor ℓ)

Approximate mass reconstruction possible. Neutrinos are ~collinear with leptons (boosted W's)

Allocate MET to the two sides to minimize mass difference

Cut in plane of HT vs M(collinear)

Table 4: List of final	selection cuts	for each Q	4 mass.

Q ₄ Mass (GeV)	Final selection
250	$H_{\rm T}$ > 500 – 0.7 × $M_{collinear}$
300	$H_{\rm T}$ > 600 – 0.5 × $M_{collinear}$
350	$H_{\rm T}$ > 600 – 0.2 × $M_{collinear}$
400	$H_{\rm T}$ > 700 – 0.3 × $M_{collinear}$

95% CL upper limit on Q₄ mass: M < 270 GeV excluded

200000000

(CDF limit: 356 GeV)

Cross section limit (for Q_4)

non-resonant production

Signature	ATLAS	CMS	Example
μμ (OS)	arXiv:1104.4398	CMS-PAS-EXO-10-020	ADD,contact interaction
γγ		arXiv:1103.4279	ADD
monojet		EXO11003 (plots only)	ADD
μμ (SS)	ATLAS-CONF-2011- 065		black holes
multi- object	ATLAS-CONF-2010- 088 (315 nb ⁻¹)	PLB697(2011)434	black holes
trilepton or SS dilepton + jets		arXiv:1102.4746	$b' \rightarrow tW$
ttbar + MET	ATLAS-CONF-2011- 036		$t' \rightarrow t$ + " χ^0 "

A S

4.9

4.5

 Λ^{-}

 Λ^+

4.2

2.9

	Λ_T [TeV] (GRW)	$M_s [\text{TeV}/c^2]$ (HLZ)						
		n = 2	n = 3	n = 4	n = 5	n = 6	n = 7	
Full	1.80	1.75	2.15	1.80	1.63	1.52	1.43	-
Truncated	1.68	1.67	2.09	1.68	1.49	1.34	1.24	
		(K-factor of 1.3 applied)						

other ADD-inspired searches

Count number of events with $M(\gamma\gamma) > 500 \text{ GeV}$

Set 95% CL upper limits on the cutoff scale M_s **Diphotons**

	GRW	He	wett	HLZ					
		Pos.	Neg.	$n_{\rm ED} = 2$	$n_{\rm ED} = 3$	$n_{\rm ED} = 4$	$n_{\rm ED} = 5$	$n_{\rm ED} = 6$	$n_{\rm ED} = 7$
Full	1.94	1.74	1.71	1.89	2.31	1.94	1.76	1.63	1.55
Trunc.	1.84	1.60	1.50	1.80	2.23	1.84	1.63	1.46	1.31

Also model indep xsec limit: $S \equiv (\sigma_{\text{total}} - \sigma_{\text{SM}}) \times \beta \times A > 0.11 \text{ pb} (95\% \text{ CL})$

Obs.

Exp.

GRW

1.62

1.66

c.f. D0 limits from diphoton & dielectron channels

HLZ

2.16

2.01

Monojet

2 n_d 2.091.941.621.46 1.29

1.49

1.38

1.66

black hole-inspired searches

2000

2500

CMS, 35 pb⁻¹

 $\sqrt{s} = 7 \text{ TeV}$

n = 6

n = 2

3

2.5

a)

3000

3.5

M_D (TeV)

S_T (GeV)

heavy quark-inspired searches

 $T \rightarrow t + A_0$

ATLAS: search for anomalous ttbar+MET

- Lepton (pt > 20) + ≥ 4 jets (pt > 20)
- MET > 80, MT > 120
- 2nd lepton veto (inc. isolated trk veto)

Exclude m(T) < 275 (300) GeV at 95% CL for m(A_0) < 50 (10) GeV

(where T is a spin 1/2 quark-like object)

CMS: search for b' \rightarrow tW via anomalous trilepton or SS dilepton production

- Lepton pt > 20, |η| < 2.5
- ≥ 4 (2) jets, pt>25 for SS dilepton (trilepton)
- Z mass veto

•
$$S_T > 350$$
 $S_T = \sum p_T(jets) + \sum p_T(leptons) + \mathbb{H}_T$

Exclude m(b') < 361 GeV at 95% CL

(CDF limit in this channel: 338 GeV)

slow/highly-ionising/stopped particle

Signature	ATLAS	CMS	Example
highly- ionising particle	arXiv:1102.0459 (3.1 pb ⁻¹)		highly charged object
slow particle	arXiv:1103.1984	JHEP03(2011)024 (3.1 pb ⁻¹)	R-hadron
empty bunch crossing		PRL106,011801 (10 pb ⁻¹)	stopped gluino

slow, massive particle search

ATLAS

β from HCAL TOF and pix. dE/dx

 β from dE/dx in Tracker only **Both**

Combine with p to get mass Fully data-driven bkg estimates

95%CL	R-hadron	ATLAS	CMS (3.1 pb ⁻¹)
R-hadron	sbottom	294	-
(GeV)	stop	309	202
	gluino*	586	398

SUSY searches in jets+(lepton)+MET (incl b)

Signature	ATLAS	CMS
jets+MET	arXiv:1102.5290	CMS-PAS-SUS-10-005 (MHT v MET) CMS-PAS-SUS-11-001 (α_t reloaded) CMS-PAS-SUS-10-009 (R vs M _R) "Razor" PLB 698 (2011) 196 (α_T)
lepton + jets + MET	PRL 106, 131802	SUS10006 (plots only)
bjets + (lepton) + MET	arXiv:1103.4344	CMS-PAS-SUS-10-011

SUSY search in jets+MET

ATLAS: 4 signal regions

		А	В	С	D
ion	Number of required jets	≥ 2	≥ 2	≥ 3	≥ 3
lect	Leading jet p _T [GeV]	> 120	> 120	> 120	> 120
a-se	Other jet(s) pT [GeV]	> 40	> 40	> 40	> 40
PI	$E_{\rm T}^{\rm miss}$ [GeV]	> 100	> 100	> 100	> 100
tion	$\Delta \phi$ (jet, \vec{P}_{T}^{miss}) _{min}	> 0.4	> 0.4	> 0.4	> 0.4
elec	$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.3	-	> 0.25	> 0.25
al s	meff [GeV]	> 500	-	> 500	> 1000
Нīг	m _{T2} [GeV]	-	> 300	-	-

$$m_{\mathrm{T2}}\left(\mathbf{p}_{\mathrm{T}}^{(1)}, \, \mathbf{p}_{\mathrm{T}}^{(2)}, \, \mathbf{p}_{\mathrm{T}}\right) \equiv \min_{\substack{\mathbf{q}_{\mathrm{T}}^{(1)} + \mathbf{q}_{\mathrm{T}}^{(2)} = \vec{E}_{\mathrm{T}}^{\mathrm{tniss}}}} \left\{ \max\left(m_{\mathrm{T}}\left(\mathbf{p}_{\mathrm{T}}^{(1)}, \, \mathbf{q}_{\mathrm{T}}^{(1)}\right), \, m_{\mathrm{T}}\left(\mathbf{p}_{\mathrm{T}}^{(2)}, \, \mathbf{q}_{\mathrm{T}}^{(2)}\right) \right\} \right\}$$
$$m_{\mathrm{eff}} \equiv \sum_{i=1}^{n} |\mathbf{p}_{\mathrm{T}}^{(i)}| + E_{\mathrm{T}}^{\mathrm{miss}}$$

events with e or μ (pt>10) discarded

CMS (MHT vs HT analysis)

Baseline selection:

- ≥ 3 jets, pt > 50
- HT > 300 (scalar sum, jets w pt>50)
- MHT > 150 (vec sum, jets w pt>30)
- Δφ(jet,MHT)>(0.5,0.5,0.3)
- e,µ veto, pt>10

2 signal regions

- HT > 500
- MHT > 250

SUSY search in jets+MET

Background estimates

Method	Baseline		High-∦ _T		High- $H_{\rm T}$	
	selection		selection		selection	
$Z \rightarrow \nu \overline{\nu}$ from γ +jets	26.3	± 4.8	7.1	±2.2	8.4	± 2.3
$t\bar{t}/W \rightarrow e, \mu + X$ lost-lepton method	33.0	± 8.1	4.8	±1.9	10.9	± 3.4
$t\bar{t}/W \rightarrow \tau_{hadr} + X$ method	22.3	± 4.6	6.7	±2.1	8.5	± 2.5
QCD Rebalance+Smear method	29.7	±15.2	0.16	± 0.10	16.0	±7.9
QCD factorization method	25.2	± 13.4	0.4	± 0.3	17.3	± 9.4
Total data-driven background	111.3	± 18.5	18.8	±3.5	43.8	±9.2
Observed in 36 pb ⁻¹ of data	111		15		40	
95% C.L. limit on signal events	40.4		9.6		19.6	

~20% bkg uncertainty!

ATLAS

CMS

	Signal region A	Signal region B	Signal region C	Signal region D
QCD	7 +8[u+j]	0.6 ^{+0.7} _{-0.6} [u+j]	9 <u>+10</u> [u+j]	0.2 +0.4 [u+j]
W+jets	$50 \pm 11[u] {}^{+14}_{-10}[j] \pm 5[\mathcal{L}]$	$4.4 \pm 3.2[u] {+1.5}_{-0.8}[j] \pm 0.5[\mathcal{L}]$	$35 \pm 9[u] \pm 10[j] \pm 4[\mathcal{L}]$	$1.1 \pm 0.7[u] {}^{+0.2}_{-0.3}[j] \pm 0.1[\mathcal{L}]$
Z+jets	$52 \pm 21[u] + \frac{15}{-11}[j] \pm 6[\mathcal{L}]$	$4.1 \pm 2.9[u] + 2.1 \\ -0.8[j] \pm 0.5[\mathcal{L}]$	$27 \pm 12[u] + \frac{10}{6}[j] \pm 3[\mathcal{L}]$	$0.8 \pm 0.7[u] + 0.6 \\ -0.0 \\ $
$t\overline{t}$ and t	$10 \pm 0[u] \pm \frac{3}{2}[j] \pm 1[\mathcal{L}]$	$0.9 \pm 0.1[u] + 0.4_{-0.3}[j] \pm 0.1[\mathcal{L}]$	$17 \pm 1[u] \pm \frac{6}{4}[j] \pm 2[\mathcal{L}]$	$0.3 \pm 0.1[u] \stackrel{+0.2}{_{-0.1}}[j] \pm 0.0[\mathcal{L}]$
Total SM	$118 \pm 25[u] {}^{+32}_{-23}[j] \pm 12[\mathcal{L}]$	$10.0 \pm 4.3[u] {}^{+4.0}_{-1.9}[j] \pm 1.0[\mathcal{L}]$	$88 \pm 18[u] + 26_{-18}[j] \pm 9[\mathcal{L}]$	$2.5 \pm 1.0[u] {}^{+1.0}_{-0.4}[j] \pm 0.2[\mathcal{L}]$
Data	87	11	66	2

MSUGRA/CMSSM interpretation

simplified model interpretation

Simplified MSSM model containing only gluino, squarks of 1st and 2nd generation and massless χ_1^{0}

1 lepton + jets + MET

1 e or μ (pt > 20) \geq 3 jets, pt > (60,30,30) MET > 125, Meff > 500

$\begin{array}{l} 1 \ e \ or \ \mu \ (pt > 20) \\ \geq 4 \ jets, \ pt > 30 \\ MET > 250, \ HT > 500 \end{array}$

Sample	$\ell=\mu$	$\ell = e$
Predicted SM 1 ℓ	1.7 ± 1.4	1.2 ± 1.0
Predicted SM dilepton	$0.0\substack{+0.8 \\ -0.0}$	$0.0\substack{+0.6\\-0.0}$
Predicted single $ au$	0.29 ± 0.22	$0.32\substack{+0.38 \\ -0.32}$
Predicted QCD background	0.09 ± 0.09	$0.0\substack{+0.16 \\ -0.0}$
Total predicted SM	2.1 ± 1.5	1.5 ± 1.2
Observed signal region	2	0

MSUGRA/CMSSM: the state of the art

ATLAS: combination of 0-lepton and 1-lepton channels

CMS: summary of SUSY searches 2010

SUSY search in bjets+MET

 \geq 3 jets, with at least 1 btag Two analyses: with/without 1 lepton

MET & HT define the signal region estimated bkg

	0-lepton	1-lepton	1-lepton
		Monte Carlo	data-driven
$t\bar{t}$ and single top	12.2 ± 5.0	12.3 ± 4.0	14.7 ± 3.7
W and Z	6.0 ± 2.0	0.8 ± 0.4	-
QCD	1.4 ± 1.0	0.4 ± 0.4	$0^{+0.4}_{-0.0}$
Total SM	19.6 ± 6.9	13.5 ± 4.1	14.7 ± 3.7
Data	15	9	9

 \geq 2 jets, with at least 1 btag

α_{T} & HT define the signal region

bkg from MC

N-jets	QCD	tī	W	$Z \rightarrow \nu \overline{\nu}$	$Z \rightarrow l^+ l^-$	total
2	0 ± 0.11	0.01 ± 0.01	0 ± 0.1	0 ± 0.09	0 ± 0.09	0.01 ± 0.21
≥ 3	0.05 ± 0.05	1.08 ± 0.07	0.10 ± 0.10	0.38 ± 0.18	0 ± 0.09	1.61 ± 0.26

bkg from data

N-jets	MC	Background Prediction	Data	LM0
≥ 2	1.61 ± 0.26	$0.33^{+0.43}_{-0.33} (\text{stat}) \pm 0.13 (\text{syst})$	1	14.2 ± 0.3

bjet channel: add'l interpretation

 $\tilde{g} \rightarrow \tilde{b}_1 b \quad \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$

 $\tilde{g} \rightarrow \tilde{t}_1 t \quad \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$

SUSY w. leptons + jets + MET

Signature	ATLAS	CMS
2leptons + (jets) + MET	arXiv:1103.6214 (OS+SS) arXiv:1103.6208 (FS)	arXiv:1103.1348 (OS) arXiv:1104.3168 (SS)
multileptons + jets + MET	ATLAS-CONF-2011-039	SUS10008 (plots only)

FS = "flavor subtraction" : measure yield of $e^+e^- + \mu^+\mu^- - e^+\mu^-$

OS dileptons + (jets) + MET

2 OS leptons, pt > 20, MET > 150 (100 for FS analysis), no jet requirement

ATLAS flavor subtraction analysis sets limits on "S"

$$\mathcal{S} = \frac{N(e^{\pm}e^{\mp})}{\beta(1 - (1 - \tau_e)^2)} - \frac{N(e^{\pm}\mu^{\mp})}{1 - (1 - \tau_e)(1 - \tau_{\mu})} + \frac{\beta N(\mu^{\pm}\mu^{\mp})}{(1 - (1 - \tau_{\mu})^2)}$$

 $\rm S_s$ < 8.8 at 95% CL

2 leptons, pt > (20,10), OS, Z veto \geq 2 jets, pt > 30 HT > 300, MET/ \sqrt{HT} > 8.5

sample	$N_{\rm A}$	$N_{\rm B}$	$N_{\rm C}$	$N_{\rm D}$	$N_{\rm A} imes N_{\rm C}/N_{\rm B}$
$t\bar{t} ightarrow \ell^+ \ell^-$	8.44 ± 0.18	32.83 ± 0.35	4.78 ± 0.14	1.07 ± 0.06	1.23 ± 0.05
$t\bar{t} ightarrow ext{other}$	0.12 ± 0.02	0.78 ± 0.05	0.16 ± 0.02	0.02 ± 0.01	0.02 ± 0.01
Drell Yan	0.17 ± 0.08	1.18 ± 0.22	0.04 ± 0.04	0.12 ± 0.07	0.01 ± 0.01
W^{\pm} + jets	0.00 ± 0.00	0.09 ± 0.09	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
W^+W^-	0.11 ± 0.01	0.29 ± 0.02	0.02 ± 0.01	0.03 ± 0.01	0.01 ± 0.00
$W^{\pm}Z$	0.01 ± 0.00	0.04 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
ZZ	0.01 ± 0.00	0.02 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00
single top	0.29 ± 0.01	1.04 ± 0.03	0.04 ± 0.01	0.01 ± 0.00	0.01 ± 0.00
total SM MC	9.14 ± 0.20	36.26 ± 0.43	5.05 ± 0.14	1.27 ± 0.10	1.27 ± 0.05
data	12	37	4	1	1.30 ± 0.78
LM0	4.04 ± 0.19	4.45 ± 0.20	13.92 ± 0.36	8.63 ± 0.27	12.63 ± 0.88
LM1	0.52 ± 0.02	0.26 ± 0.02	1.64 ± 0.04	3.56 ± 0.06	3.33 ± 0.27

SS dileptons + (jets) + MET

2 SS leptons, pt > 20, MET > 100 No jet requirement

4 search regions; OR of leptonic and hadronic triggers

Multileptons + jets + MET

36

e and µ, pt > 20,20,20(e) or 10(µ) Z veto, m(ℓℓ) < 20 also vetoed ≥ 2 jets, pt > 50 MET > 50

- 19 events with 3 leptons (before other cuts). 0 events after cuts
- 0 events with 4 or more leptons

Limits also set in simplified MSSM models

 \geq 3 leptons, including taus! pt from 8 GeV Tau: full tau ID; also isolated track MET > 50 or H_T > 200

Complex analysis: many exclusive search channels

Limits also set in other models: RPV, slepton co-NLSP

photon(s)+(lepton)+MET

Signature	ATLAS	CMS
diphoton+MET	arXiv:1012.4272 (3.1 pb-1)	arXiv:1103.0953
lepton+photon +MET		SUS110002 (plots only)

diphoton + (jet) + MET

2 photons, Et > 25 No jet requirement MET > 75

Set limits on UED model: 1/R < 729 GeV at 95% CL

Conclusion and outlook

ATLAS and CMS have explored a wide variety of signatures for signs of New Physics with integrated luminosities $\sim 40 \text{ pb}^{-1}$ for each experiment

A variety of objects have been studied in a number of combinations.

- e, μ , tracks, jets, MET are routine
- bjets and taus starting to get looked at

No sign of New Physics yet. Limits significantly improve over Tevatron in many cases. SUSY was not "just around the corner"

Both experiments are starting to explore ways to present their results in less model-dependent ways.

Expect 30-100 times more data by the end of 2011.

Collected x7 of 2010 dataset already!

Extra material

muon jets

Exclude gluino pair production with RPV decay for gluino masses < 280 GeV

Search for ttbar resonance

Simultaneous fit to 8 distributions $\frac{1}{2}$ 2(e,µ) x [3j1btag + 4j(0,1,2)btag]

Set limits on $\sigma \cdot Br$

 $m_{7'}$ [TeV/c²]