Standard Model Physics and Higgs Searches at the LHC

Markus Klute (MIT) for the ATLAS & CMS Collaboration

Phenomenology 2011 Symposium

9-11 May 2011 University of Wisconsin at Madison New Union South, 1308 West Dayton St

Outline

Introduction

- LHC Performance
- ATLAS and CMS Performance

Selected Physics Results

- Heavy Ion
- Jet Production
- Vector Bosons
- Top Quark Physics
- Higgs Boson Searches
- Conclusion

LHC Performance in 2010

- 2010 pp @ 7 TeV: ~ $47pb^{-1}$ delivered, L = $2x10^{32}$ cm⁻²s⁻¹
- 2010 PbPb: $\sim 10\mu b^{-1}$ delivered

LHC Performance in 2011

• 2011 pp @ 7 TeV: ~ 230pb⁻¹ delivered

Start full non-LHC

physics program

- L = $8.4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- 768 bunches, 10¹⁴ protons per beam
- 50ns bunch spacing
- Increased pile-up

Scrubbing run

(date t.b.c.)

• We will soon talk about fb⁻¹'s

		Apr			Мау			June						
Wk		13	14	15	16	17	18	19	20	21	22	23	24	25
Мо		28	4	11	18	Easter	2	9	16	23	30	6	Whit 13	20
Tu														
We														
Th					8	9					Ascension			
Fr					G. Friday		MD				1st May comp.			
Sa	1	¥			8									
Su					8	1st May								

ATLAS and CMS Performance

- Operational fraction per subdetector ~ 99%
- Overall data taking efficiency ~92%
- Improved uncertainty on pp luminosity measurement ~4%
- Detector performance is approaching expectation
- Many, many, many physics results
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

PHENO 2011 - 05/09/2011

Re-Discovery of SM in 2010 Data

ATLAS and CMS Standard Model Physics and Higgs Searches Pheno 2011

- Chad Suhr: Top cross section and mass measurement at ATLAS
- Frank Siegert: Monte Carlo tuning with ATLAS data
- Srivas Prasas: W/Z and di-boson results from ATLAS
- Paola Giovannini: Jet and photon results from ATLAS
- Yaquan Fang: Standard Model Higgs Searches with ATLAS
- Borge Kile Gjelsten: SUSY Higgs searches with ATLAS
- Adam Everett: Recent EWK results from CMS
- Sinjini Sen Gupta: Recent results on jet physics
- Simon Marie E De Visscher: Recent heavy-flavor results
- Lara Iglesias: Higgs searches with CMS
- Hans Holger Enderle: Recent top results
- Jessica Leonard: Inclusive vector boson production cross section

CM	Nuon Solenoid
	Compact h

Can only show highlights here!

PHENO 2011 - 05/09/2011

Heavy Ion Results

ATLAS & CMS: Heavy Ion detectors

- Calorimeter with large coverage
- Muon spectrometer with large coverage
- Tracking for $pT > \sim 500 \text{ MeV}$
- Measurements so far
 - Global and collective phenomena
 - Charge particle multiplicity
- Observation of
 - Jet quenching
 - Z boson production
 - J/ ψ yield suppression
- Experiments are preparing more results for QM 2011
- Details on HI physics by Peter Jacobs

Jet Physics

PHENO 2011 - 05/09/2011

Inclusive Jet Production

- Measured jet p⊤ from 18 GeV -1.5 TeV
- Corrected to particle level
- Inclusive jet spectra in agreement with NLO pQCD calculation to non-perturbative corrections
- Test perturbative QCD cross section predictions over 10 orders of magnitude

Inclusive Jet Production

- Systematic uncertainties range from 50% at low pT to 20%
 - Unfolding of detector effects; jet energy scale dominates
- Theoretical uncertainty typically 10-20%
- Comparisons with different PDFs

Di-Jet Cross Sections

- $\ensuremath{\, \text{o}}$ Di-jet spectrum tested up to masses of 4 TeV
- Data agrees well with prediction (NLO pQCD + non-perturbative corrections)
- Experimental uncertainty dominated by jet energy scale
- PDF generally largest theoretical uncertainty

LHC Standard Candles

Markus Klute - MIT

PHENO 2011 - 05/09/2011

Vector Boson Production

Lepton Charge Asymmetry

- . Measured with electrons and muons
- . ATLAS and CMS selected different phase space
- Electron channel allows larger η coverage; charge confusion due to bremsstrahlung more challenging
- Results provide strong new constraints on PDFs

$$\frac{\sigma(W^+)}{\sigma(W^-)} = 1.43 \pm 0.05$$

Experimental quantity :

$$\mathcal{A}(\eta) = \frac{d\sigma/d\eta (W^+ \to \ell^+ \nu) - d\sigma/d\eta (W^- \to \ell^- \bar{\nu})}{d\sigma/d\eta (W^+ \to \ell^+ \nu) + d\sigma/d\eta (W^- \to \ell^- \bar{\nu})}.$$

PHENO 2011 - 05/09/2011

Vector Bosons Plus Jets

- Major background for top, Higgs & new physics
- . ATLAS & CMS report inclusive rates and double differential cross sections
- . Results compared to particle level predictions
- Agreement with ME generators

Vector Bosons Plus Jets

- Major background for top, Higgs & new physics
- . ATLAS & CMS report inclusive rates and double differential cross sections
- . Results compared to particle level predictions
- Agreement with ME generators

W & Z to Tau Decays

- Establish hadronic tau as tool for many new physics search, in particular Higgs
- CMS uses reconstruction of individual decay modes
- ATLAS traditional cone algorithm

Vector Boson in Pairs

- WW production
 - Shares final state with H→WW search. Groundwork for Higgs search.
 - Top quarks major background
 - Cross section measured in agreement with SM
 - _ ATLAS: **Nobs = 8**, Nbkg = 1.7
 - _ CMS: **Nobs = 13**, Nbkg = 3.3
 - · Dominated by statistical uncertainty
 - Limits on triple gauge couplings (TGC)

 $\begin{array}{ll} & \sigma \ \text{ww} \ (\text{pb}) \\ \text{ATLAS} & 40^{\ +20}_{\ -16} \ (\text{stat}) \\ \text{CMS} & 41 \pm 15.3 \ (\text{stat}) \\ \text{Theory} & 43 \pm 2 \end{array}$

More Results with W and Z's

Top Quark Physics

- LHC is a factory of top quarks
 - Cross section ~160pb
- Multiple final states used in measurements
 - di-lepton
 - lepton+jets
 - lepton+jets+b-tag
- Top quark measurements use most physics objects
 - Leptons
 - Jets and missing ET
 - Primary and secondary vertex (b-tagging) reconstruction
- Systematic uncertainties usually dominated by
 - JET/MET energy scale
 - b-tagging efficiency
- Top quark used as standard candle and is main background to many searches

top candidate: e μ 2b

Top Quark Cross Section

- . Lepton + jets channel with b tagging
 - Clean signal observed
 - ATLAS
 - _ Profile likelihood fit of multivariate discriminant
 - lepton $\boldsymbol{\eta},$ jet momenta, aplanarity, b-tag weight
 - CMS
 - Binned likelhood with secondary vertex mass in categories of jets and jets with b-tag

Top Quark Cross Section

- . Measured in lepton+jets and di-lepton channels
- SM, ATLAS and CMS in agreement
- Experimental uncertainty in the 10% range, same order as theoretical prediction

Top Quark Properties

- Early top mass measurements
 - ATLAS: lepton+jet channel ($m_{top} = 169 \pm 4.0 \pm 4.9 \text{ GeV}$)
 - CMS: two measurement in di-lepton channel ($m_{top} = 175.5 \pm 4.6 \pm 4.6 \text{ GeV}$)
 - Uncertainties in the 5 GeV range
 - Consistent with Tevatron measurements
- Others: W polarization, search for FCNC, top pair charge asymmetry

Single Top Quarks

- First observation of single top t-channel production at the LHC from CMS
- . σ = 86.3 \pm 30 pb by CMS
- σ = 53 $^{\scriptscriptstyle +46}\text{-}_{\scriptscriptstyle 36}$ pb by ATLAS
- . Cross sections in agreement with expectation
- Signature: lepton + ET^{miss} + b-jet + jet
- Small signal extracted from large background with multivariate analysis technique

PHENO 2011 - 05/09/2011

Higgs Searches at the LHC

Combined effort by ATLAS, CMS and theory "Handbook of LHC Higgs Cross Sections" arXiv:1101.0593

[<mark>qd</mark>] (x+µ ↑		NLL QCD + NLO EW			∖s= 7 TeV	LHC HIGGS XS WG 2011
dd 1	100 - 100 - 100 - 000 - 100 - 100 - 00 - 000 - 100 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000	O OCD + NLO EW)	_			
10 ⁻²	100	200	300	400 5	00 M [0]	1,000
					M _H [Ge	٧J

Channels included	\approx Mass range (GeV)	Status, Comments		
$H \rightarrow \gamma \gamma$	115-150	Challenging.		
$VBF H \rightarrow \tau\tau$	115-145	Results with 2010 data. Breaking new ground		
VH, H→bb (highly boosted)	115-125			
VH, H→WW→lvjj	130-200	Results with 2010 data. Work horse for 120-200 GeV, large yield		
$H \rightarrow WW \rightarrow 2l2v + 0/1$ jets	120-600			
VBF H→WW→2l2v	130-500	,		
H→ZZ→4l	120-600	The golden channel. Low bkgr but low yield		
H→ZZ→2l2v	200-600	Major bkgr is diboson and top. Profits from jet, MET reco and good b-tagging		
H→ZZ→2l2b	300-600			

- Event yields can be modified and additional channels are possible in models beyond the SM
 - Modified particle content can change production or decay of the Higgs boson (e.g. 4th generation models)
 - Higgs sector is modified
 - _ Two Higgs doublet models (2HDM)
 - _ More complex models

modified from K. Hoepfner

$Higgs \rightarrow WW$

- H \rightarrow WW \rightarrow 2l2v : most significant analysis over large mass range
- Multiple analysis techniques deployed
- ATLAS and CMS with similar performance

$\mathsf{Higgs} \to \mathsf{WW}$

- H \rightarrow WW \rightarrow 2l2v : most significant analysis over large mass range
- Multiple analysis techniques deployed
- ATLAS and CMS with similar performance

Higgs $\rightarrow \gamma \gamma$

- Very exciting channel. No signal observed yet.
- Mass range 110-140 GeV
- Measurement of background and estimation of sensitivity from ATLAS

Higgs $\rightarrow \gamma \gamma$

- Very exciting channel. No signal observed yet.
- Mass range 110-140 GeV
- Measurement of background and estimation of sensitivity from ATLAS

Higgs $\rightarrow \tau \tau$

- Studied τ_{μ} + τ_{had} , τ_{μ} + τ_{e} and τ_{e} + τ_{had} channels
- No excess observed in di- τ mass spectrum
- Z boson production irreducible background
- Limits on cross section and MSSM [$tan\beta$,mA] exclusion
- ATLAS & CMS breaking new grounds!

Charged and Doubly Charged Higgs

Charged Higgs

- Explore top decays. No deviation from expectation observed.
- Limit on BR($t \rightarrow H^+b$)
- Limits comparable to Tevatron results

- Search in 3 or 4 lepton (e,μ,τ) final states ≥
- No excess observed
- 95% CL on Φ^{++} for several scenarios
 - _ $m_{\Phi^{++}}$ < 154 GeV for BR (Φ^{++} →eµ) = 100%
 - _ $m_{\Phi^{++}}$ < 156 GeV for BR (Φ^{++} →µµ) = 100%
 - _ $m_{\Phi^{++}}$ < 144 GeV for BR (Φ^{++} →ee) = 100%
 - $_{-}$ m_{Φ^{++}} < 116-131 GeV for benchmark points

PHENO 2011 - 05/09/2011

20

10

10⁻²

SM Higgs Prospects for Exclusion

- If SM Higgs does not exist, exclusion possible in 2011
- Region below $m_{H} = 125 \text{ GeV}$ extremely challenging

How much data is needed to exclude?

--*- \s=7 TeV -A-\s=8 TeV

400

300

Markus Klute - MIT

500 m_H [GeV]

SM Higgs Prospects for Discovery

- If SM Higgs exist, discovery possible in 2011 (in limited mass range)
- Region below m_H = 125 GeV extremely challenging

Conclusion

- With 2010 data ATLAS & CMS produced an impressive set of Standard Model measurements at 7 TeV for QCD, W, Z and top
- Very quick turn-around of data by experiments
- First precision measurements
- Prospects for Higgs searches are very promising
- Baseline set for many searches for new physics
 Discussed in the next talk by George Redlinger

• Fasten your seatbelt. Already ~230pb⁻¹ collected per experiment

• Many interesting results not included. See complete list and references at

- https://twiki.cern.ch/twiki/bin/view/AtlasPublic
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults