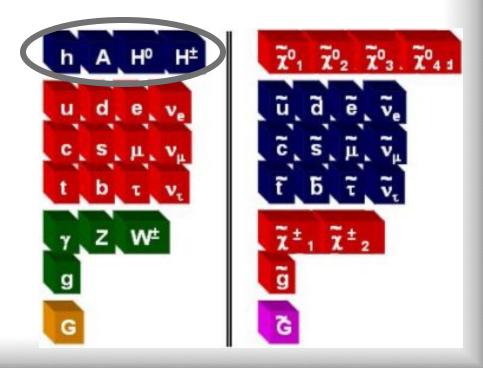

MSSM Higgs and Beyond

Marcela Carena

Theoretical Physics Department, Fermilab Enrico Fermi Institute, University of Chicago

PHENO 2011 SYMPOSIUM University of Wisconsin-Madison, May 9-11, 2011


Outline

• Introduction:

Higgs in the minimal SUSY model (MSSM)
Tevatron and LHC reach

MSSM Higgs Extensions: A model-independent approach

The EFT at NLO
Masses and couplings
Collider phenomenology

The Higgs Sector in the MSSM

2 Higgs SU(2) doublets ϕ_1 and ϕ_2

$$\tan \beta = v_2/v_1$$

2 CP-even h, H with mixing angle α 1 CP-odd A and a charged pair H^{\pm}

$$\Rightarrow v = \sqrt{v_1^2 + v_2^2} = 246 \text{ GeV}$$

At tree level,

one Higgs doublet couples only to down quarks, the other couples only to up quarks

$$-L = \overline{\psi}_L^i \left(\hat{h}_d^{ij^+} \phi_1 d_R^j + \hat{h}_u^{ij^+} \phi_2 u_R^j \right) + h c.$$

Since the up and down sectors are diagonalized independently, the Higgs interactions remain flavor diagonal at tree level.

Couplings to gauge bosons & fermions (SM normalized)

hZZ, hWW, ZHA, WH
$$^{\pm}$$
H $\longrightarrow \sin(\beta - \alpha)$
HZZ, HWW, ZhA, WH $^{\pm}$ h $\longrightarrow \cos(\beta - \alpha)$

(h,H,A) $u\bar{u} \longrightarrow \cos\alpha/\sin\beta$, $\sin\alpha/\sin\beta$, $1/\tan\beta$ (h,H,A) $d\bar{d}/l^+l^- \longrightarrow -\sin\alpha/\cos\beta$, $\cos\alpha/\cos\beta$, $\tan\beta$

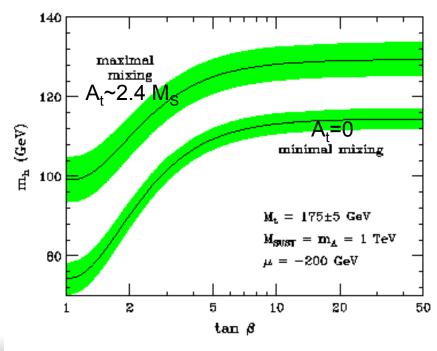
Decoupling limit $m_A >> m_Z$

Lightest (SM-like) Higgs $m_h \le m_Z$, others heavy and roughly degenerate

Radiative Corrections to Higgs Boson Masses

Important quantum corrections due to incomplete cancellation of particles and superparticles in the loops

Main effects: stops; and sbottoms at large tan beta


$$m_h^2 = M_Z^2 \cos^2 2\beta + \frac{2 g_2^2 m_t^4}{8 \pi^2 M_W^2} \left[\ln(M_S^2/m_t^2) + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12 M_S^2} \right) \right] + \text{h.o.}$$

$$M_S^2 = \frac{1}{2}(m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2)$$
 and $X_t = A_t - \mu/\tan\beta \longrightarrow {
m stop}$ mixing

- m_t^4 enhancement
- log sensitivity to stop masses $M_{\scriptscriptstyle S}$
- depend. on stop mass mixing X_t
- **2** -loop corrections: $m_h \le 135 \text{GeV}$

$$M_S = 1 \rightarrow 2 \text{ TeV} \Longrightarrow \Delta m_h \simeq 2 - 5 \text{ GeV}$$

Brignole, M.C., Degrassi, Diaz, Ellis, Haber, Hempfling, Heinemeyer, Hollik, Espinosa, Martin, Quiros, Ridolfi, Slavich, Wagner, Weiglein, Zhang, Zwirner, ...

Radiative Corrections to the Higgs Couplings

1) Important effects through radiative corrections to the CP-even mass matrix δM_{ij}^2 , which defines the mixing angle α

$$\sin \alpha \cos \alpha = M_{12}^2 / \sqrt{\left(\operatorname{Tr} M^2\right)^2 - 4 \det M^2}$$

The off diagonal elements are prop. to

$$M_{12}^2 \propto -\left(m_A^2 + m_Z^2\right) \cos \beta \sin \beta + \frac{m_t^4}{16\pi^2 v^2} \frac{\mu X_t}{M_S^2} \left(\frac{X_t^2}{M_S^2} - 6\right)$$
 M.C. Mrenna, Wagner

Important effects of rad. correc. on $\sin\alpha$ or $\cos\alpha$ depending on the sign of μX_t and the magnitude of X_t/M_S and μ/M_S

===> govern couplings of Higgs to fermions and vector bosons

When off-diagonal elements vanish, either $\sin \alpha$ or $\cos \alpha$ vanish ===> strong suppression of the SM-like Higgs boson coupling to b-quarks and taus

Enhancement of BR (h/H --> WW/ γ) for $m_{h/H}$ < 135 GeV

Radiative Corrections to the Higgs Couplings

2) Important vertex corrections to Higgs-fermion couplings from SUSY loops, relevant for large tanb (induce FCNC and CC effects)

$$g_{hbb} \approx \frac{-m_b \sin \alpha}{(1 + \Delta_b) v \cos \beta} (1 - \Delta_b / \tan \alpha \tan \beta)$$

destroy basic relation $g_{\rm h,H,Abb}/g_{h,H,A\tau\tau} \propto m_b/m_{\tau}$

$$g_{Hbb} \approx \frac{m_b \cos \alpha}{(1 + \Delta_b) v \cos \beta} (1 - \Delta_b \tan \alpha / \tan \beta)$$

$$\Delta_b = \left(\varepsilon_0^3 + \varepsilon_Y h_t^2\right) \tan \beta$$

$$g_{Abb} \approx \frac{m_b \tan \beta}{(1 + \Delta_b) v}$$

$$\varepsilon_0^i \approx \frac{2\alpha_s}{3\pi} \frac{\mu^* M_{\tilde{g}}^*}{\max\left[m_{\tilde{d}_1^i}^2, m_{\tilde{d}_2^i}^2, M_{\tilde{g}}^2\right]} \qquad \varepsilon_Y \approx \frac{\mu^* A_t^*}{16\pi^2 \max\left[m_{\tilde{t}_1}^2, m_{\tilde{t}_2}^2, \mu^2\right]}$$

$$\varepsilon_{Y} \approx \frac{\mu^{*} A_{t}^{*}}{16\pi^{2} \max \left[m_{\tilde{t}_{1}}^{2}, m_{\tilde{t}_{2}}^{2}, \mu^{2}\right]}$$

Strong suppression of h(H) -bottom coupling

M.C. Mrenna, Wagner Haber, Herrero, Logan, Penaranda, Rigolin, Temes Noth, Spira: Muhlleitner, Rzehak, Spira

$$\tan \alpha \simeq \Delta_b / \tan \beta \rightarrow g_{hb\bar{b}} \simeq 0; \ g_{h\tau\tau} \simeq \Delta_b m_\tau / V$$
 (Similar for H)

SM-like Higgs decays into b- and tau-pairs can be drastically changed

Enhancement of BR $(h/H --> WW/\gamma\gamma)$ for $m_{h/H} < 135$ GeV

SM-like MSSM Higgs: SUSY benchmark scenarios

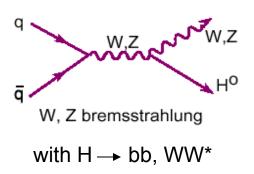
M.C., Heinemeyer, Wagner, Weiglein

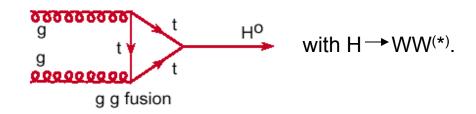
• The m_h max scenario: [Maximizes m_h]

$$M_S = 1 \text{ TeV}$$
; $X_t = 2.4 \text{ M}_S$; $m_{\tilde{g}} = 0.8 \text{ M}_S$; $M_2 = -\mu = 200 \text{GeV}$; $A_t = A_b$

 $g_{hbb}, g_{h\tau\tau} \sim \sin \alpha_{eff} / \cos \beta$ enhanced for low m_A and intermediate to large tan beta (analogous for H)

hence, strong suppression of BR($h \rightarrow \gamma \gamma$) and BR($h \rightarrow WW$) with respect to SM

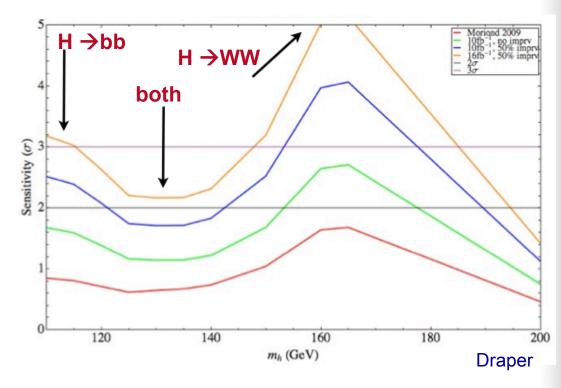

- The m_h^{min} scenario: [zero mixing in the stop sector] Similar coupling's behaviour as m_h^{max} , but minimizes m_h .
- The small $\sin \alpha_{eff}$ scenario: (specially interesting for early phase LHC)


$$M_S = 800 \text{ GeV}$$
; $X_t = -1.2 \text{ TeV}$; $\mu = 2.5 M_s$; $m_{\tilde{g}} = M_2 = 500 \text{GeV}$; $A_t = A_b$

 $g_{hbb}, g_{h au au}$ importantly suppressed for large tan beta and small m_A, and in different ways due to Δ_b corrections

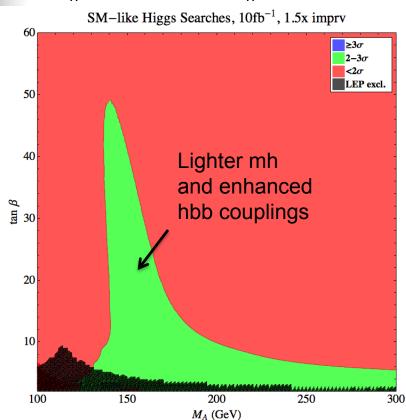
hence, BR($h \rightarrow \gamma \gamma$) and BR($h \rightarrow WW$) enhanced with respect to SM

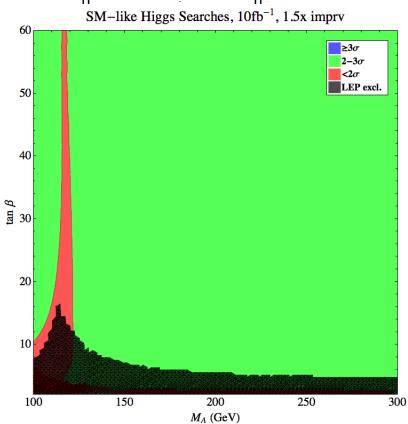
SM-like Higgs production at the Tevatron



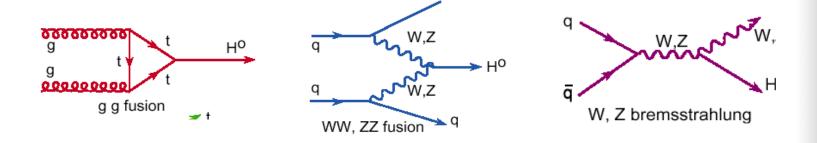
The Tevatron projections for a SM-like Higgs

2011 and $L = 10 \text{ fb}^{-1}$




Tevatron reach for the MSSM SM-like Higgs

All channels included in CDF/DO combination.

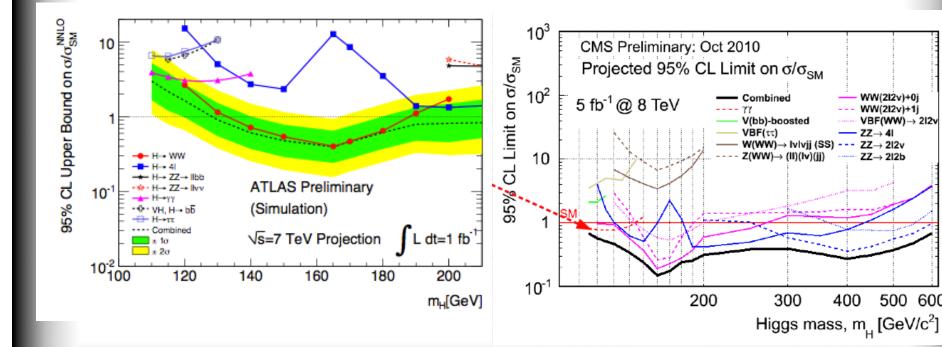


The m_h^{min} scenario: $m_h < 120$ GeV

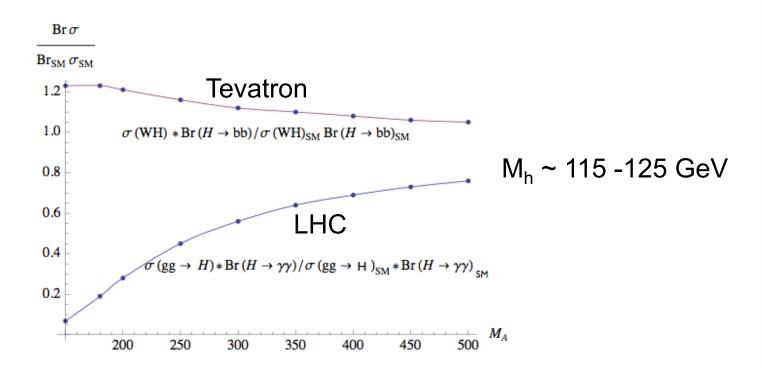
The small $\sin \alpha_{eff}$: interesting coverage from h \rightarrow WW for low mass range

SM-like Higgs at LHC

WW(2l2v)+0j

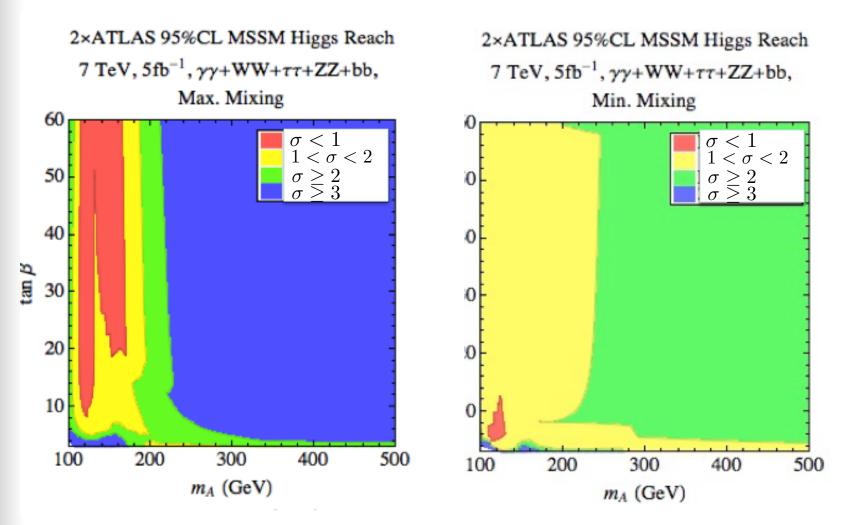

ZZ→ 4I

 $ZZ \rightarrow 2I2v$

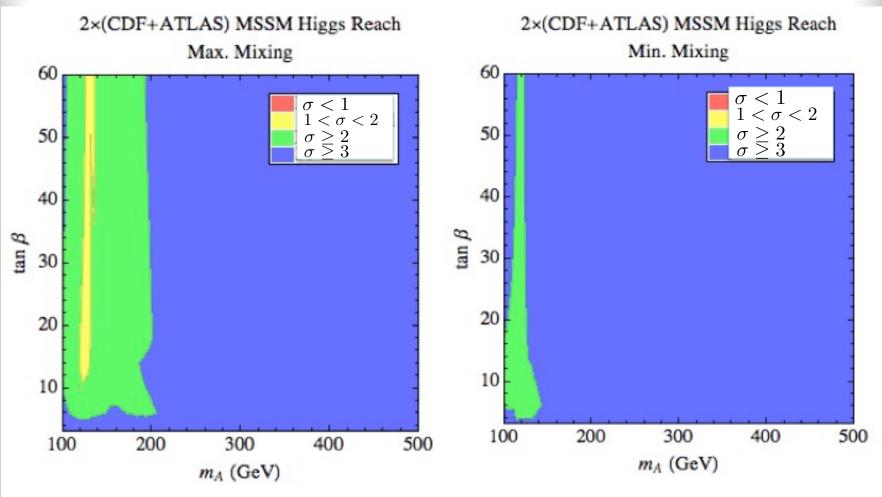

ZZ→ 2l2b

WW(2l2v)+1j VBF(WW) → 2l2v

500 600



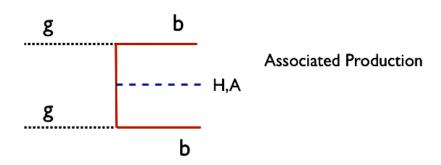
For a large region of parameter space suppression of the $\gamma\gamma$ mode at the LHC

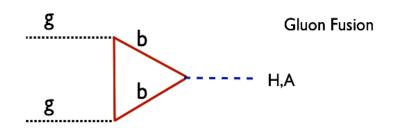

Suppression still sizable for m_A as large as 500 GeV

LHC reach for the MSSM SM-like Higgs

Important to improve on early LHC reach in tau tau mode

Tevatron - early LHC combined reach: MSSM SM-like Higgs


3 sigma evidence of the SUSY Higgs responsible for EWSB

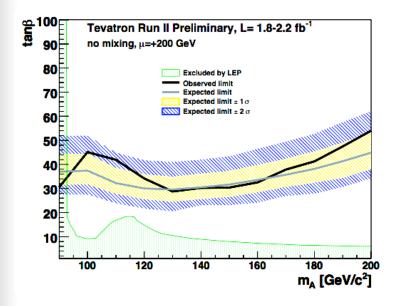

Non-Standard Higgs Production at the Tevatron and LHC

- Enhanced couplings to b quarks and tau-leptons
- Considering value of running bottom mass and 3 quark colors

$$BR(A \rightarrow b\overline{b}) \cong \frac{9}{9 + (1 + \Delta_b)^2}$$

$$BR(A \to \tau^+ \tau^-) \cong \frac{\left(1 + \Delta_b\right)^2}{9 + \left(1 + \Delta_b\right)^2}$$

$$\sigma(b\overline{b}A) \times BR(A \to b\overline{b}) \cong \sigma(b\overline{b}A)_{SM} \times \frac{\tan \beta^2}{(1+\Delta_b)^2} \times \frac{9}{(1+\Delta_b)^2+9}$$

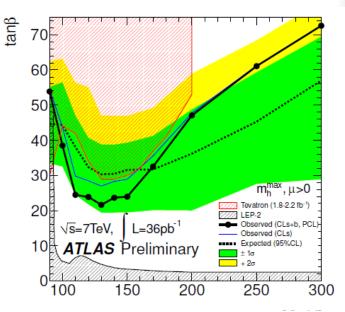

$$\sigma(b\overline{b}, gg \to A) \times BR(A \to \tau\tau) \cong \sigma(b\overline{b}, gg \to A)_{SM} \times \frac{\tan\beta^2}{(1+\Delta_b)^2+9}$$

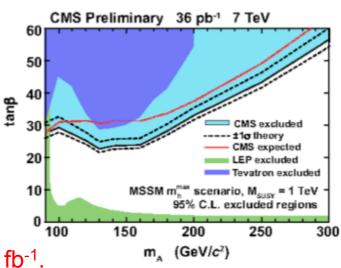
Robust predictions in the tau-tau channel

Excellent coverage at both colliders in the di-tau inclusive channel

MSSM Higgs at the Tevatron and LHC

CDF + D0 combination: A/H → di-taus


Limits are robust under variation of SUSY parameter space


All channels combined:

H/A to tau pairs plus SM-like Higgs searches;

Significant coverage by Tevatron

LHC: almost all space explored at 3σ with ~ 5 fb⁻¹.

LEP bounds on SM-like Higgs are in some tension with upper bound on m_h in the MSSM

Extensions of the MSSM Higgs Sector

- MSSM with Explicit CP violation
- Additional SM singlets
- Additional gauged U(1)'s
- Models with enhanced weak gauge symmetries
- Effective field theory with higher dimensional operators:
 A more model-independent approach

More general MSSM Higgs extensions: EFT approach

- The non-minimal part of Higgs sector is parametrically heavier than the weak scale (understood as v = 174 GeV)
- SUSY breaking is of order v, hence heavy masses nearly supersymmetric

M: overall ``heavy" scale SUSY breaking mass splittings $\Delta m \sim {
m v} \ll M$

In practice: formalism applies for e.g. $M \sim 1 \text{ TeV}$

Low energy superpotential: at leading order in 1/M

$$W = \mu H_u H_d + \frac{\omega_1}{2M} (H_u H_d)^2$$

• can include SUSY breaking via a spurion X= m_S θ^2 $W_X \supset \alpha_1 \frac{\omega_1}{2M} X (H_u H_d)^2$

M.C, Kong, Ponton, Zurita

Only two new parameters: ω_1 and X

see also Dine, Seiberg, Thomas; Antoniadis, Dudas, Ghilencea, Tziveloglou

With CP violation: Altmannshofer, M.C, Gori, de la Puente

At NLO, Kähler potential only:

$$K = H_d^{\dagger} e^{2V} H_d + H_u^{\dagger} e^{2V} H_u + \Delta K^{\text{CV}} + \Delta K^{\text{Cust}}$$

Custodially violating (treel level):

$$\Delta K^{\text{CV}} = \frac{c_1}{2|M|^2} (H_d^{\dagger} e^{2V} H_d)^2 + \frac{c_2}{2|M|^2} (H_u^{\dagger} e^{2V} H_u)^2 + \frac{c_3}{|M|^2} (H_u^{\dagger} e^{2V} H_u) (H_d^{\dagger} e^{2V} H_d)$$

Custodially preserving (tree level):

$$\Delta K^{\text{Cust}} = \frac{c_4}{|M|^2} |H_u H_d|^2 + \left[\frac{c_6}{|M|^2} H_d^{\dagger} e^{2V} H_d + \frac{c_7}{|M|^2} H_u^{\dagger} e^{2V} H_u \right] (H_u H_d) + \text{h.c.}$$

Plus SUSY breaking terms obtained by multiplication by spurion, with new coefficients

$$X \to \gamma_i , \qquad X^{\dagger} X \to \beta_i$$

EFT coefficients can be essentially arbitrary, if UV theory complicated enough

Why to go beyond LO in the EFT approach

Quartic interactions of 2HDM can be written as

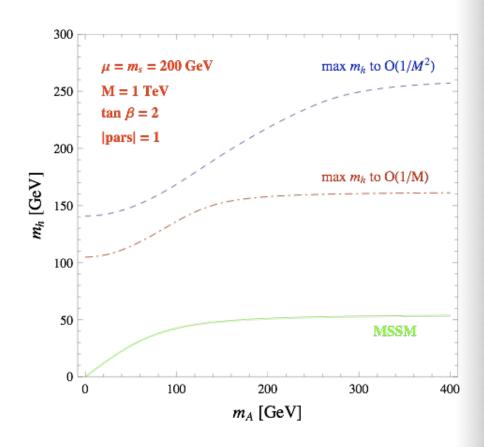
$$V \supset \frac{1}{2}\lambda_{1}(H_{d}^{\dagger}H_{d})^{2} + \frac{1}{2}\lambda_{2}(H_{u}^{\dagger}H_{u})^{2} + \lambda_{3}(H_{u}^{\dagger}H_{u})(H_{d}^{\dagger}H_{d}) + \lambda_{4}(H_{u}H_{d})(H_{u}^{\dagger}H_{d}^{\dagger})$$

$$+ \left\{ \frac{1}{2}\lambda_{5}(H_{u}H_{d})^{2} + \left[\lambda_{6}(H_{d}^{\dagger}H_{d}) + \lambda_{7}(H_{u}^{\dagger}H_{u}) \right] (H_{u}H_{d}) + \text{h.c.} \right\}$$
At O(1/M), only λ_{5} , λ_{6} , λ_{7} modified

At O(1/M²) all λ_i 's receive contributions

But at tree-level in MSSM: $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \propto g^2$ (small)

NLO effects can be relevant without indicating breakdown of EFT (however, higher order effects should be small...)


Higgs Spectra in EFT extensions of the MSSM

The lightest tree level Higgs mass can be well above the LEP bound!!.

Expansion parameters: μ/M and $m_{\rm S}/M$ ($m_{\rm S}$ is the spurion F term)

Second order terms can have a relevant impact.

Large deviations from the MSSM mass values, specially for low tanb

Higgs Spectra in EFT extensions of the MSSM

M.C., Kong, Ponton, Zurita

The lightest tree level Higgs mass is well above M_Z .

Expansion parameters: μ/M and m_S/M

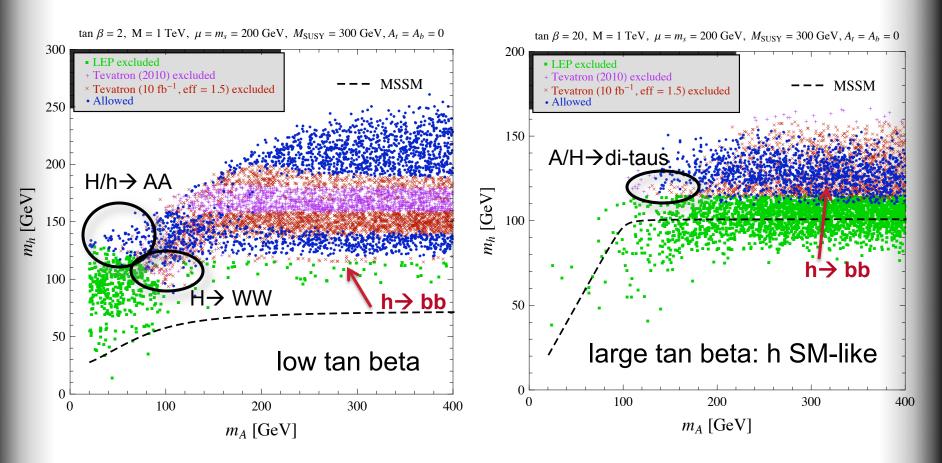
Second order terms can have a relevant impact.

Large deviations from the MSSM mass values, specially for low tanb

 $\max m_h$ for |pars| < 1 $\mu = m_s = 200 \text{ GeV}$ **sEWSB** M = 1 TeV250 $\tan \beta = 2$ 200 m_h [GeV] 100 50 MSSM MSSM-like vacua 200 300 100 m_A [GeV]

Scanning over model parameters

Scan: $|\omega_1|, |c_i| \in [0, 1]$ and $|\alpha_1|, |\beta_i|, |\gamma_i|, |\delta_i| \in [1/3, 1]$ for i = 1, 2, 3, 4, 6, 7

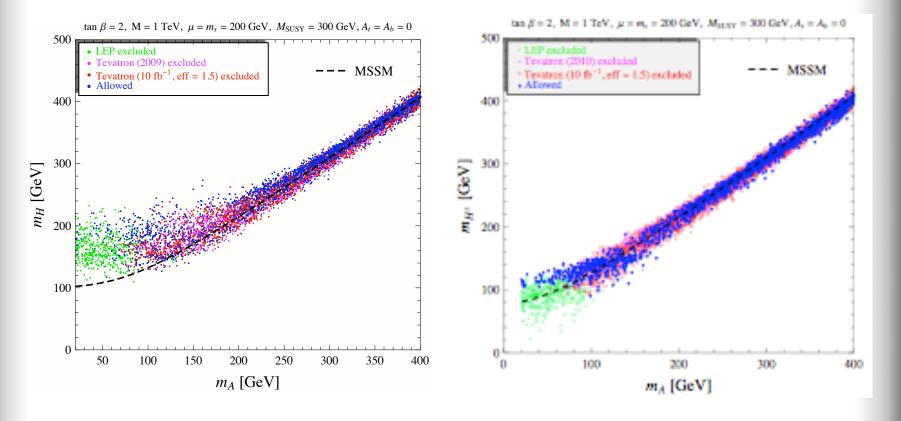

Lightest Higgs Mass after LEP and the Tevatron

GREEN → LEP excluded

MAGENTA → Tevatron excluded

[Higgsbounds: Bechtle, Brein, Heinemeyer, Weiglein, Williams]

RED → Tevatron with 10 fb-1 and eff. = 1.5 BLUE → LHC



Most magenta and red regions at Tevatron reach in the h→WW channel

Heavy CP Even and Charged Higgs Masses

H and H^{\pm} follow MSSM trend (with m_A), but

- large spreading at smaller m_A (heavier H) Multi-Higgs chain decays
- non-negligible deviations throughout

Heavy CP-even Higgs

Charged Higgs

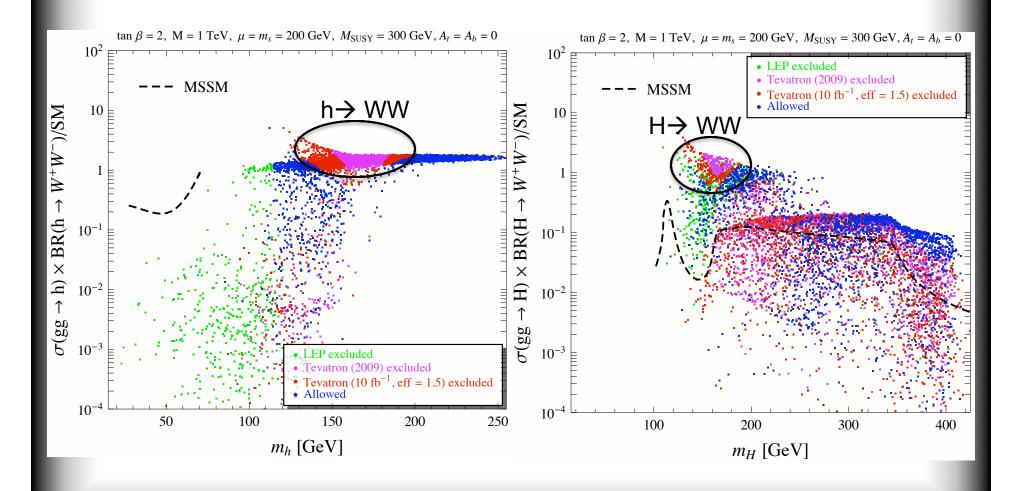
BMSSM Higgs at the Tevatron and LHC

At Tevatron:

SM-like searches: 1) h \rightarrow bb 2) h \rightarrow WW 3) H \rightarrow WW

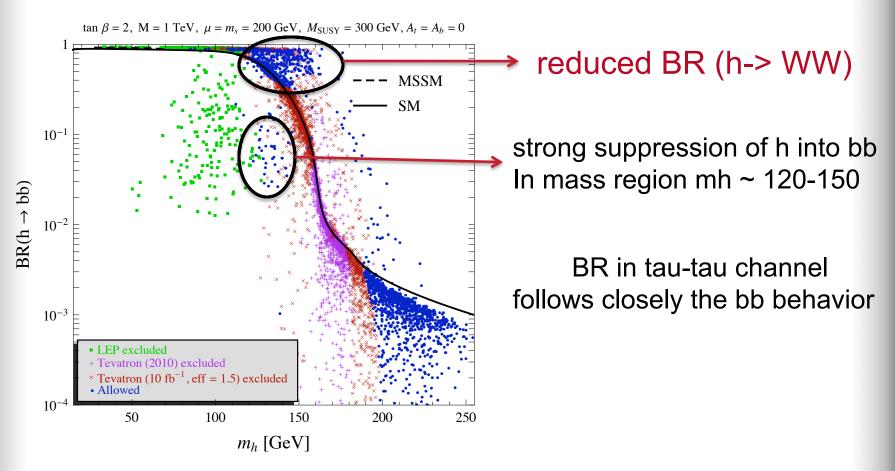
Non-SM-like searches: A, H and h to tau pairs,

At the LHC:


SM-like reach in di-photons, tau pairs and di-bosons
Non-SM-like Higgs boson in di-tau pairs or top-bottom and tau-neutrinos
Multi-Higgs chain decays

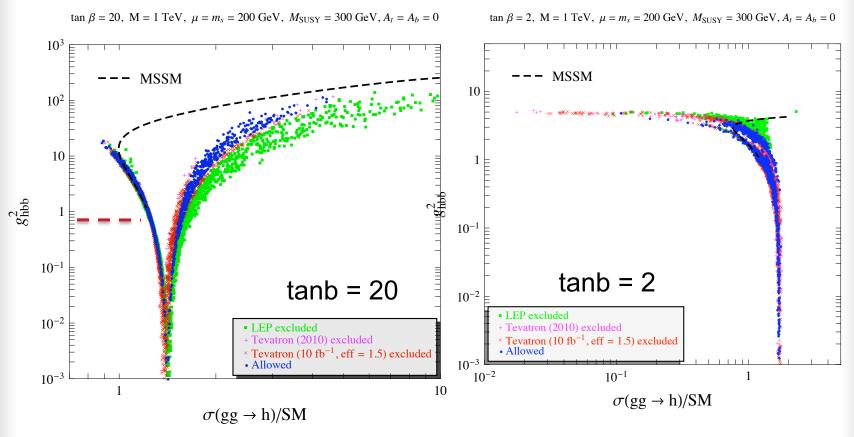
Benchmark Scenarios

Many benchmarks similar to MSSM ones, or with larger mass splitting in the A/H/H+ system (MSSM with \cancel{OP}) \rightarrow need to detect light new spectra. Here, only examples of non-MSSM like scenarios, including \cancel{OP} BMSSM.


CP-even Higgs Bosons: low tanb

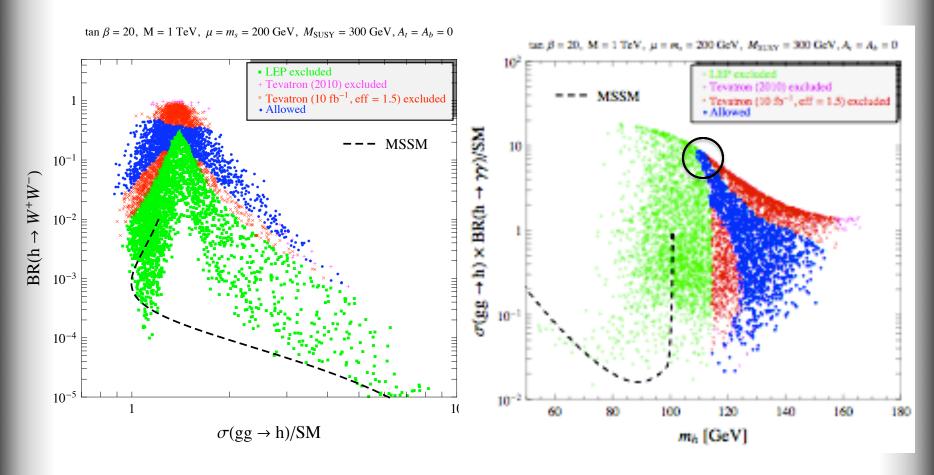
Tevatron searches in the h/H \rightarrow WW channel, (h/H \rightarrow bb remains borderline) Tevatron allowed (blue): good LHC coverage in h/H \rightarrow WW/ZZ channels

Lightest Higgs Boson: low tanb

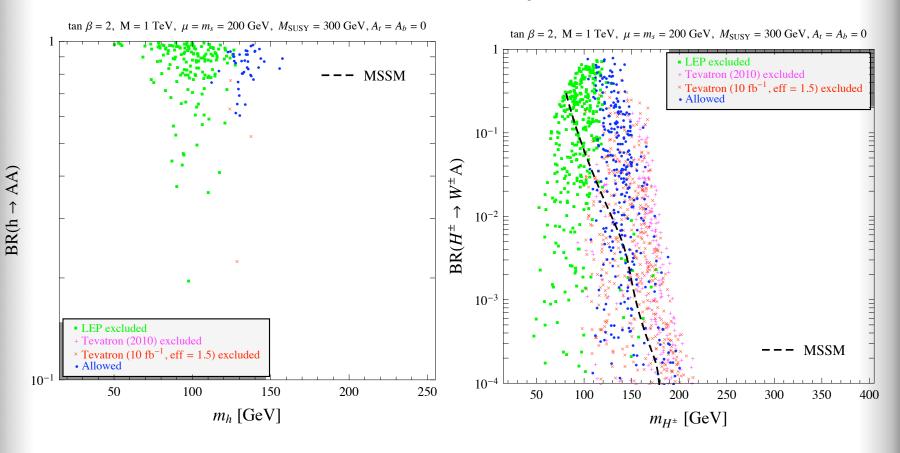

Important variations in the BR of h into bottom pairs

In small regions of parameter space, enhancement of order 2-5 in
 BR (h → di-photons) → at Tevatron/LHC reach in the near future

Suppression of the hbb couplings:


both for large and (unlike the MSSM) for intermediate/low tanb

Cancellation between tree level and h.o. operators contributions yields enhancement in gluon fusion: lack of b-loops + light SUSY


For large tanb: enhanced hbb coupling as in the MSSM, when h is non-SM like

Enhancement of h→ WW/ZZ and h→ di-photon channels (also due to hbb coupling suppression)

Interesting reach in h→ WW and in di-photon signals at the Tevatron and, of course, at the LHC

A-h inversion of hierarchy at low tanb

The MSSM channels A/H \rightarrow hh and H⁺ \rightarrow hW⁺ replaced by h/H \rightarrow AA and H⁺ \rightarrow AW⁺ in BMSSM with parameter sets of BR's of order one

Benchmark point 1 (LHC signal)

Heavy h and H, non-SM like h in WW/ZZ channels at LHC

m_A (GeV)	$m_h \text{ (GeV)}$	m_H (GeV)	$m_{H^{\pm}}$ (GeV)
134	181	205	165
g_{hWW}^2	g_{HWW}^2	g_{hgg}^2	g_{Hgg}^2
0.03	0.95	0.79	0.99
channel	BMSSM (SM)	channel	BMSSM (SM)
$h \rightarrow b\bar{b}$	0.23 (0.005)	$h \rightarrow \tau \bar{\tau}$	0.03 (0.0005)
$h \rightarrow WW$	0.68 (0.92)	$h \rightarrow ZZ$	0.04 (0.07)
$H \rightarrow WW$	0.72 (0.73)	$H \rightarrow ZZ$	0.27 (0.27)
$A \rightarrow b\bar{b}$	0.89	$A \rightarrow \tau \bar{\tau}$	0.10
$H^+ ightarrow t ar{b}$	0.57	$H^+ \rightarrow \tau \nu_{\tau}$	0.40

tanb = 2

- All Higgs CP-even Higgs masses well above the MSSM limit and m_h > m_A
- H very SM–like, first to be seen at LHC
- hWW and hZZ very suppressed, still h → ZZ/WW possible at LHC

Not such a heavy SM-like Higgs in the MSSM, specially with light SUSY

Benchmark point 2 (LHC signal)

No Tevatron reach. Two $ZZ \rightarrow 4$ lepton peaks at the LHC

$m_A \text{ (GeV)}$	$m_h \text{ (GeV)}$	m_H (GeV)	$m_{H^{\pm}}$ (GeV)
184	204	234	203
g_{hWW}^2	g_{HWW}^2	g_{hgg}^2	g_{Hgg}^2
0.3	0.7	1.39	0.36
channel	BMSSM (SM)	channel	BMSSM (SM)
$h \rightarrow WW$	0.73 (0.72)	$h \rightarrow ZZ$	0.25 (0.27)
$H \rightarrow WW$	0.70 (0.71)	$H \rightarrow ZZ$	0.29 (0.29)
$A \rightarrow b\bar{b}$	0.87	$H^+ \rightarrow t \bar{b}$	0.99

tanb = 2

- All Masses in similar mass range and beyond LEP/Tevatron reach
- Lightest Higgs ~ 200 GeV
- BR(h/H→ WW/ZZ) ~ SM value but hWW suppressed
- Any decay H/A/H⁺ → h X is closed due to heavy h

Two Higgs signals in the ZZ channel at LHC, both in the 200 GeV range

Benchmark point 3 (LHC signal) Multi Higgs signal: chain decays

m_A (GeV)	m_h (GeV)	m_H (GeV)	$m_{H^{\pm}}$ (GeV)
64	135	155	125
g_{hWW}^2	g_{HWW}^2	g^2_{hgg}	g_{Hgg}^2
0.002	0.991	0.65	1.17
channel	BMSSM	channel	BMSSM
$h \rightarrow b\bar{b}$	0.15	$h \rightarrow AA$	0.84
$H \rightarrow WW$	0.12	$H \rightarrow AA$	0.84
$H \rightarrow b\bar{b}$	0.02	$A \rightarrow b\bar{b}$	0.92
$H^+ \rightarrow \tau \nu_{\tau}$	0.56	$H^{\pm} \rightarrow W^{\pm} + A$	0.40

tanb = 2

- h → AA and H→ AA, with subsequent decays into di-taus + b pairs
- Also gg → H → WW but needs large luminosity (about 100 fb⁻¹)
- H⁺ → A W⁺ possible

Benchmark point 4 (LHC signal) SM-like light higgs with enhanced di-photon signal

$m_A \; ({ m GeV})$	m_h (GeV)	m_H (GeV)	$m_{H^{\pm}}$ (GeV)
210	111.3	215	225
g_{hWW}^2	g_{HWW}^2	g_{hgg}^2	g_{Hgg}^2
0.98	0.02	1.39	0.84
channel	BMSSM (SM)	channel	BMSSM (SM)
$h \rightarrow b \bar{b}$	0.03 (0.79)	$h \rightarrow \gamma \gamma / 10^{-3}$	12.1 (2.1)
$h \rightarrow \text{jets}$	0.56 (0.07)	$h \rightarrow WW$	0.36 (0.05)
$H \rightarrow b\bar{b}$	0.86	$H \rightarrow \tau \bar{\tau}$	0.14
$A \rightarrow b\bar{b}$	0.86	$A \rightarrow \tau \bar{\tau}$	0.14
$H^{\pm} \rightarrow \tau \nu_{\tau}$	0.35	$H^\pm o t ar b$	0.64

tanb = 20

- strong suppression of h→bb channel (escaped LEP bound)
- •Similar scenario with heavier A/H will allow A/H → hh decays

Benchmark point 5 (LHC signal) CP violation: All three Higgs decay dominantly to WW

Scenario I	H_1	H_2	H_3
M_{H_i} [GeV]	157	177	202
$\xi^2_{ZZH_i}$	0.94	0.04	0.02
$\xi_{ggH_i}^2$	0.72	0.62	0.47
$BR(H_i \rightarrow bb)$	15%	34%	24%
$BR(H_i \rightarrow WW)$	76%	58%	53%
$BR(H_i \rightarrow ZZ)$	6%	2%	19%

	Sc. I
$ \alpha $	1
$ \omega $	2
$Arg(\alpha)$	$\pi/2$
$Arg(\omega)$	$-\pi/10$
$\tan \beta$	2
$M_{H^{\pm}}$ [GeV]	195
M [TeV]	2.5
$\mu \; [{\rm GeV}]$	160
m_S [GeV]	160

New CP phases allowed by EDM's

Large region of phases for similar but smaller mass values excluded by Tevatron

Heaviest Higgs can also be seen in ZZ channel

Outlook

Some type of SM-like Higgs is probably around the corner

The Higgs sector can shed light to many SM puzzles the origin of mass, flavor, dark matter ...

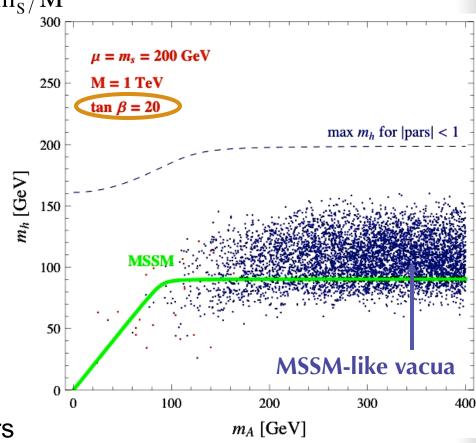
Many types of experiments are exploring the Higgs sector impressive results from the Tevatron and LHC

The SM and many new physics models, in particular SUSY Models, are being constrained

Some corners of SUSY parameter space may be elusive

But the Tevatron and ultimately the LHC will have the final word on multi Higgs searches

Higgs Spectra in EFT extensions of the MSSM


M.C., Kong, Ponton, Zurita

The lightest tree level Higgs mass is well above M_Z .

Expansion parameters: μ/M and m_S/M

Second order terms can have a relevant impact.

Smaller effects for large tanb main contributions proportional to 1/M².

Scanning over model parameters

Scan: $|\omega_1|, |c_i| \in [0, 1]$ and $|\alpha_1|, |\beta_i|, |\gamma_i|, |\delta_i| \in [1/3, 1]$ for i = 1, 2, 3, 4, 6, 7

Precision Electroweak Constraints

1. Tree-level effects due to new physics:

$$\alpha T^{\text{Tree}} = -\frac{v^2}{2M^2} \sin^4 \beta \left[c_2 - 2(\tan \beta)^{-2} c_3 + (\tan \beta)^{-4} c_1 \right]$$

2. Effects from MSSM Higgs sector:

3. Custodially violating mass splittings in SUSY sector

Medina, Shah, Wagner

Here: require that $-0.4 < T^{\text{Tree}} + T^{\text{Higgs}} < 0.3$ (S is small)

Consistent with $-0.2 < T^{
m Total} < 0.3~(95\%~C.L.)$ for $0 < T^{
m SUSY} < 0.2$

Examples

Example 1: singlets

$$B_{\mu}$$
-term $W=\mu H_u H_d +rac{1}{2}M_S S^2 + \lambda_S S H_u H_d - X \left(a_1 \mu H_u H_d +rac{1}{2}a_2 M_S S^2 + a_3 \lambda_S S H_u H_d
ight)$

$$K = H_u^{\dagger} e^V H_u + H_d^{\dagger} e^V H_d + S^{\dagger} S - X^{\dagger} X \left(b_1 H_d^{\dagger} H_d + b_2 H_u^{\dagger} H_u + b_3 S^{\dagger} S \right)$$

Soft masses: $m_{H_d}^2, m_{H_u}^2, m_S^2$

Integrating out the singlet:

$$M=M_S \;, \qquad \omega_1=-\lambda_S^2 \;, \qquad lpha_1=a_2-2a_3 \;, \ c_4=|\lambda_S|^2 \;, \qquad \gamma_4=a_2-a_3 \;, \qquad eta_4=|a_2-a_3|^2-b_3$$

Note $c_4 > 0$, other arbitrary

Example 2: triplets with $Y = \pm 1$

$$W \supset M_T T \bar{T} + \frac{1}{2} \lambda_T H_u T H_u + \frac{1}{2} \lambda_{\bar{T}} H_d \bar{T} H_d$$
$$+ X \left(a_2 M_T T \bar{T} + \frac{1}{2} a_3 \lambda_T H_u T H_u + \frac{1}{2} a_4 \lambda_{\bar{T}} H_d \bar{T} H_d \right)$$
$$K \supset T^{\dagger} e^{2V} T + \bar{T}^{\dagger} e^{2V} \bar{T} + X X^{\dagger} \left(b_3 T^{\dagger} T + b_4 \bar{T}^{\dagger} \bar{T} \right)$$

Integrating out the triplets:

$$M = M_T, \qquad \omega_1 = \frac{1}{4}_T \bar{\tau}, \qquad \alpha_1 = a_2 - a_3 - a_4,$$

$$c_1 = \frac{1}{4} |\lambda_{\bar{T}}|^2, \qquad \gamma_1 = a_2 - a_4, \qquad \beta_1 = |a_2 - a_4|^2 - b_3,$$

$$c_2 = \frac{1}{4} |\lambda_T|^2, \qquad \gamma_2 = a_2 - a_3, \qquad \beta_2 = |a_2 - a_3|^2 - b_4,$$

$$M = M_T, \qquad \alpha_1 = a_2 - a_3 - a_4,$$

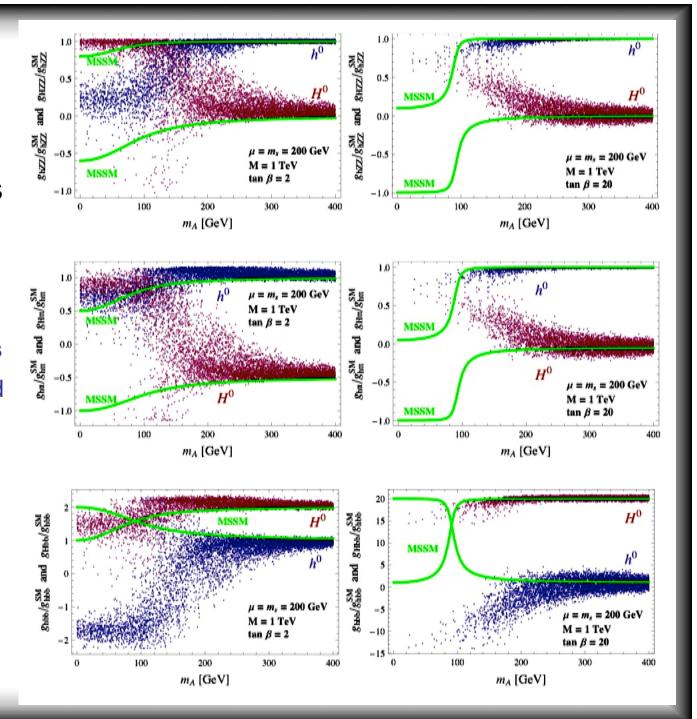
$$\beta_1 = |a_2 - a_4|^2 - b_3,$$

$$\beta_2 = |a_2 - a_3|^2 - b_4,$$

$$\Delta T < 0$$

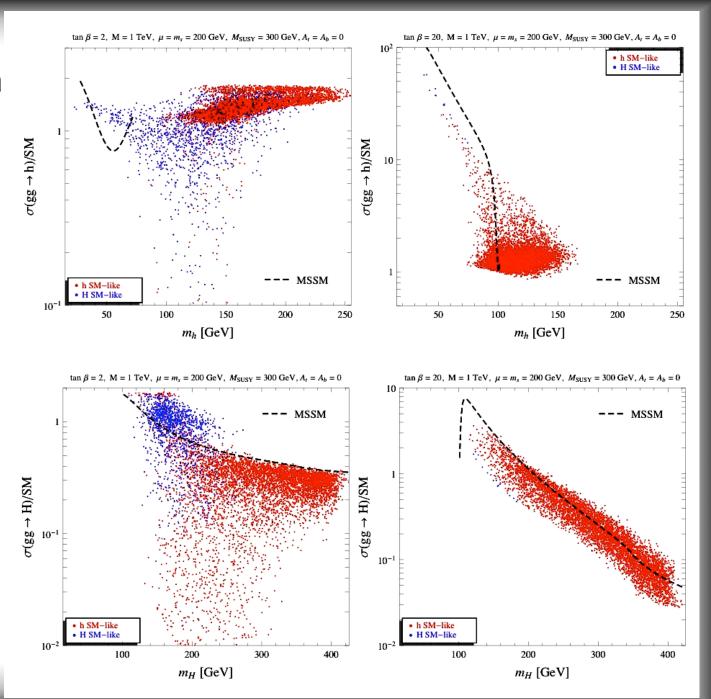
$$(\Delta T < 0)$$

For triplets with $Y = 0 \rightarrow \lambda_T H_u T H_d$


$$M = M_T , \qquad \omega_1 = -\frac{1}{4}\lambda_T^2 , \qquad \alpha_1 = a_2 - 2a_3 , \\ c_3 = \frac{1}{2}|\lambda_T|^2 , \qquad \gamma_3 = a_2 - a_3 , \qquad \beta_3 = |a_2 - a_3|^2 - b_3 , \\ c_4 = -\frac{1}{4}|\lambda_T|^2 , \qquad \gamma_4 = a_2 - a_3 , \qquad \beta_4 = |a_2 - a_3|^2 - b_3 , \\ \end{pmatrix} \quad \text{Induce custodially violating ops.}$$

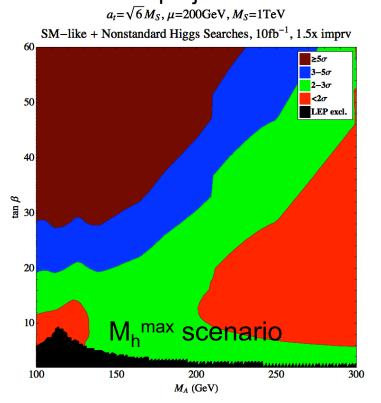
$$Note \ c_3 > 0 \ (\Delta T > 0), \\ and \ c_4 < 0!$$

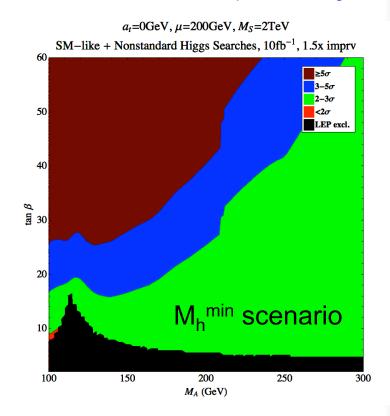
Note
$$c_3 > 0 \ (\Delta T > 0)$$
, and $c_4 < 0$!


CP-even Higgs
Couplings
to gauge bosons
and fermions

Variations of couplings
with respect to SM and
MSSM can lead to
important variations in
the production
processes and BR's
relevant for
Higgs searches

Gluon Fusion Production


A generic
enhancement
of the production
for the Higgs
that is SM-like
(the one with
largest coupling
to WW/ZZ)



- The couplings of the CP-odd and charged Higgs bosons differ from the MSSM due to corrections to their kinetic terms only at order 1/M²
 - → much less significant
- The main effects involving A and H⁺⁻ are those related to new decay modes due to variations in the mass spectrum
- New decay channels such as H → AA/AZ, h→ AA and H⁺→ W⁺A open with BR's of order one (low tanb, A/h inversion)
- Regular MSSM channels with decays into h are closed at low tanb and open at large tan beta: $A \rightarrow hZ$; $H^{\pm} \rightarrow W^{\pm}h$; $H \rightarrow hh$
- At sufficiently large m_A (> 300 GeV) behavior similar to MSSM

MSSM Higgs at the Tevatron

All channels combined: H/A to tau pairs plus SM-like Higgs searches, CDF + D0 projections for 10 fb⁻¹ Draper, Liu, Wagner

The Tevatron can explore a significant region of the MSSM Higgs parameter space LHC rapidly becoming superior in tau-tau non SM-like Higgs channel. LHC with all channels combined \rightarrow almost all space explored at 3 σ with 5 fb⁻¹.

Benchmark point 1a (Tevatron signal)

Heavy Higgs SM-like, but Tevatron reach in h → WW

$m_A \text{ (GeV)}$	m_h (GeV)	m_H (GeV)	$m_{H^{\pm}} \; (\text{GeV})$
135	174	186	164
g_{hWW}^2	g_{HWW}^2	g_{hgg}^2	g_{Hgg}^2
0.11	0.89	1.05	0.65
channel	BMSSM (SM)	channel	BMSSM (SM)
$h \rightarrow b \bar{b}$	0.12 (0.01)	$h \rightarrow WW$	0.84 (0.96)
$H \rightarrow WW$	0.81 (0.82)	$H \rightarrow ZZ$	0.17 (0.17)
$A \rightarrow b\bar{b}$	0.90	$A \rightarrow \tau \bar{\tau}$	0.10
$H^+ \rightarrow \tau \nu_{\tau}$	0.59	$H^+ ightarrow t ar{b}$	0.38

tanb = 2

- All Higgs CP-even Higgs masses well above the MSSM limit and m_h > m_A
- hWW coupling very suppressed but still sizable BR(h→ WW)
- H→ WW too heavy for the Tevatron, but good at LHC in H→ZZ→ 4-leptons

Not such a heavy SM-like Higgs in the MSSM, specially with light SUSY