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Review of This Session

• Neal Weiner:  Direct Detection
• Nicole Bell:  Indirect Detection
• Lloyd Knox:  Really Indirect Detection

(of dark stuff)



CMB is a well-calibrated
detector

Theory-observation
agreement quite striking.

Confirmation and
increased precision, but
no surprises.

Contents of Universe*

*contains trace amounts of nuts



Surprises may come at higher resolution
Extra neutrino
species?

New results soon from SPT and ACT shrinking errors by ~3.

Planck in ~Jan 2013 will shrink errors by a further factor of ~5.
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standard
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(Hou et al.
2011)

Hou, Keisler, LK, Millea & Reichardt (2011)



Outline

• CMB as a detector of a stochastic process
• The stochastic process (inflation)
• Review of BBN and neutrinos
• Impact of extra neutrinos on the detector’s

(CMB’s) transfer function
• Relation to other evidence for extra (sterile)

neutrinos
• Discriminating changes to the stochastic

process, from changes to the transfer function
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Expansion prevents quantum
fluctuation from becoming undone

Horizon length

space

tim
e

Accelerating
expansion
drives the
regions apart
and out of
causal contact.
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BBN and Y*P Review

Cooler ==>

TP,n freeze-out Tnuc

More ν  species ==> higher H (at given T) ==> less time to
cool to Tnuc ==> fewer decays ==> more Helium (also
freeze-out n/p ratio increases with H)

p
n

*Fraction of baryonic mass in Helium

H2 = 8πGρ/3





Three Scales in the CMB Transfer
Function
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Three Scales in the CMB Transfer
Function

θs
rs

DA

sound horizon:  distance
sound could travel by
the time of last
scattering.  θs controls
peak locations.

rs  α  1/H

H2 = 8πGρ/3

Extra ν ==> higher ρ ==> higher H ==> takes
less time to cool to Trec ==> rs is smaller

100 θs = 1.04 +/-
0.0016



Effect of extra ν on rs

θs
rs

DA

sound horizon:  distance
sound could travel by
the time of last
scattering.  θs controls
peak locations.

H2 = 8πGρ/3

Extra ν ==> higher ρ ==> higher H ==> takes
less time to cool to Trec ==> rs is smaller

100 θs = 1.04 +/-
0.0016

If we knew DA we could find rs = θs DA and
determine H

rs = s0a*cs da/(a2H)



Effect of extra ν on rd

θd

θs
rs

rd

DA

DA rddiffusion
length

Modes with λ < rd are
suppressed

Silk damping

Random-walk so goes as sq. root of time   ==> rd ~ 1/H0.5

θd/θs = rd/rs ~ H0.5

(Remember rs ~ 1/H)

Dependence on DA has
dropped out!



Surprises may come at higher resolution
Extra neutrino
species?

Neff is increased here from 2 to 5 with fixed θEQ and θs.

To fix θEQ we increase ρcdm.  To fix θs we adjust ρΛ to change DA.
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confidence
that Neff >
standard
model value
(Hou et al.
2011)

Hou, Keisler, LK, Millea & Reichardt (2011)



Same models but
with θd fixed as
well.

The effect is
indeed due to
change to θd

Bashinsky &
Seljak (2004)



Extra Cosmological Neutrinos?
Arguments For

• 98.4% confidence that Neff > standard model
value of 3.046

• Oscillation evidence for sterile neutrinos from
mini-Boone / LSND

• Oscillation to sterile neutrinos can explain
reactor anomalies too.

• Measurements of Y have increased in
magnitude and uncertainty allowing Neff = 4
to be consistent with BBN and perhaps
preferred (Izotov & Thuan 2010, Aver, Olive &
Skillman 2010, 2011)
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YP Measurements

Aver, Olive & Skillman (2010)

Izotov &
Thuan
(2010)

From
extragalactic
regions of
ionized low-
metallicity
gas

(except
for WMAP
points)



Extra Neutrinos ?
Arguments against

1) There are other solutions to the damping tail
power deficit
– Statistical fluke
– Increasing YP  (btw, that’s how we kept θd fixed)
– Primordial power spectrum (dns/dlnk non-zero)
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2) They lead to too many galaxy clusters.



Hou et al. (2011)

Vikhlinin et
al. (2009)
constraint
from X-ray
cluster
abundanc
es



Extra Neutrinos ?
Arguments against

1) There are other solutions to the damping tail power
deficit
– Statistical fluke
– Increasing YP  (btw, that’s how we kept θd fixed)
– Primordial power spectrum (dns/dlnk non-zero)

2) They lead to too many galaxy clusters.
3) Laboratory and Reactor neutrino oscillation solutions

require ~ 1 eV masses.  Too massive.  They would
cluster on large scales, altering shape of matter
power spectrum.
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So what’s going on?

• If there are extra sterile neutrinos (as lab and
nuclear experiments indicate), they better not
get thermally produced in the early Universe
because their masses are too large.

• Lab and nuclear experiments indicate two
extra species.  Could their be a third sterile
neutrino, produced in early U that is massive
enough to be the dark matter?
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Advertisement for Keisler et
al. (SPT, in prep)

Data available now Data available soon



The Future

M. Millea

With better data we can
relax assumption that
NeffBBN = NeffCMB (so
far assumed implicitly
throughout this talk).

Forecast for Planck

Forecast for Planck + YP
measurement with error
same size as reported by
Izotov & Thuan (2010).
With luck, these will
disagree! (e.g. Fischler & Myers
(2010)



High-resolution CMB Temperature
Anisotropies as a Particle Physics Detector

• High-resolution CMB data, by being sensitive to the
diffusion scale, allow us to determine expansion rate
up to recombination -- similar to Helum abundance
sensitivity to expansion rate during BBN.

• There are interesting things happening now
regarding BBN, high-res CMB, and lab and reactor
neutrino data.

• It is not obvious how this all fits together.
• New damping tail measurements will be out very

soon, and dramatically improved ones will be out
from Planck in ~ Jan 2013.

• Planck measurements will provide tight constraints
on (or detections of) hot relics.


