Non-SUSY Searches @ CMS

Sung-Won Lee

Texas Tech University

for

the CMS Collaboration

Phenomenology 2011 Symposium

@ Univ. of Wisconsin-Madison May 9-11, 2011

Introduction

This talk (Non-SUSY Searches @ CMS) describes

- some of early new physics searches we've performed
 - using 2010 pp data (~36 pb⁻¹) @ 7 TeV
- some of the important theories we've tested so far
 - new heavy resonances
 - quark/lepton compositeness
 - extra dimensions & other exotic signatures

Many results are published or submitted/accepted for publication

~20 searches are detailed in:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Searches for New Physics with Dijets & Multijets

- Bump search in the dijet spectrum
- Dijet centrality ratio
- Dijet angular distribution
- Multijet resonance

PRL 105, 211801 (2010)

Dijet Mass Resonances

Select dijet in event with $|\eta_1,\eta_2| < 2.5 \& |\Delta\eta| < 1.3$ Look for bumps in dijet mass spectrum

- sensitive to the coupling of any new massive object to quarks and gluons.
- no resonance signal observed,
 set model-independent limits on 8 models

95% C.L. Mass Limit [TeV] (2.9pb⁻¹)

String	q*	Axigluon/ Coloron	E6 Diquark
0.5 – 2.5	0.5 – 1.58	0.50 - 1.17 1.47 - 1.52	0.50 - 0.58 0.97- 1.08 1.45 - 1.60

Dijet Centrality Ratio

Look for excess of central dijets compared to forward dijets

New physics tends to decay isotropically, but

QCD tends to be forward: deviation from flat is sign of NP

2.9 pb⁻¹ data consistent with flat, set limit on $\Lambda > 4$ TeV

arXiv:1102.2020 accepted by PRL

Dijet Angular Distribution

Look at dijet c.o.m scattering angle θ^* via χ variable

 $\chi = e^{2y^*} = \frac{1 + |\cos \theta^*|}{1 - |\cos \theta^*|}$

Isotropic new physics peaks at low χ & QCD is flat in χ

Good agreement between data (36 pb⁻¹) & NLO QCD, set limit on C.I. scale $\Lambda^+ > 5.6$ (5.0)TeV, $\Lambda^- > 6.7$ (5.8)TeV (similar to ATLAS expected limit: $\Lambda^+ > 5.7$ TeV)

EXO-11-001

Three Jet Resonances

Searching for strongly coupled resonances decaying to 3-jets

- look for 3 jet resonances in 6 jet final states
- modeled with RPV g decays

Signature Selection

- high Jet Multiplicity (≥ 6 Jets)
- large event scalar sum p_⊤ (> 425 GeV)
- use an ensemble of jet combinations
- construct 20 jet triplet combinations (M_{iii})

Limits set for RPV decaying gluinos

- excluding masses from 200 to 280 GeV
- highest limits to date, first pp limits
- largest excess seen @ 390 GeV → significant of 1.9 σ (look-elsewhere effect)

Searches for Additional Gauge Bosons

- Di-lepton Resonances: W', Z'
- Leptoquarks: LQ1, LQ2

arXiv:1103.0981 accepted by JHEP

Dilepton Mass Resonances

Look for bump in dilepton mass spectrum

- Two central, isolated $e(\mu)$ with $p_T > 25(20)$ GeV
- No deviation from SM (dominantly Drell-Yan)
- Set limits, most stringent limits to date

CMS limits $(35 \sim 40 \text{ pb}^{-1})$

Channel	μμ	ee	Combined
Z _{SSM}	1027 GeV	958 GeV	1140 GeV
Z_{ψ}	792 GeV	731 GeV	887 GeV
G_{KK} , $k/M_{Pl} = 0.05$	778 GeV	729 GeV	855 GeV
G_{KK} , $k/M_{Pl} = 0.10$	987 GeV	931 GeV	1079 GeV

Express limit as a ratio b/w $\sigma(Z')$ to the SM Z

$$R_{\sigma} = \frac{\sigma(pp \to Z' + X \to \ell\ell + X)}{\sigma(pp \to Z + X \to \ell\ell + X)}$$

 $\mathbf{W}"
ightarrow \mathbf{e} \mathbf{v}$: arXiv:1012.4945, accepted by PRL $\mathbf{W'}
ightarrow \mu \mathbf{v}$: arXiv:1103.0030, submitted to PLB

W' Searches

Look for Jacobian peak in $M_T(ev)$ & $M_T(\mu v)$ distribution

- A central, isolated $e(\mu)$ with $p_T > 30(25)$ GeV
- No significant deviation from SM
- Set limits, most stringent limits to date

CMS limits (36 pb⁻¹)

ATLAS: 1.45 TeV Tevatron: 1.1 TeV

eν	1.36 TeV
μν	1.40 TeV
εν+μν	1.58 TeV

eejj: arXiv:1012.4031, accepted by PRL

Leptoquarks

- eejj + evjj: EXO-10-006
- LQs decays to lepton and quark. $\beta = BR(LQ \rightarrow lq)$, $1-\beta = BR(LQ \rightarrow vq)$
- Search for 1st (e) and 2nd (μ) generation LQs, look for S_T (scalar sum of jet & lepton p_T)

2000

1800

 S_{T} [GeV]

1600

μμjj: arXiv:1012.4033, accepted by PRL

μμjj + μνjj: EXO-10-008

Leptoquarks

1st gen LQs – eejj+evjj channels

 $M_{LQ} > 340, 384 \text{ GeV for } \beta = 0.5, 1$

2nd gen LQs – μμjj channel

 $M_{LO} > 394 \text{ GeV for } \beta=1$

- Exceed Tavatron limits for almost the entire β range (except @ very low β)
- Similar to ATLAS limit: $M_{LQ1} > 376 \text{ GeV } \& M_{LQ2} > 422 \text{ GeV for } \beta = 1$

Searches for Compositeness

- Quark Compositeness
- Lepton Compositeness

Highest dimuon p_⊤ candidate <u>event</u> ~ 555 GeV

EXO-10-025

Quark Compositeness

Weakly decaying excited quark

- $q^* \rightarrow qZ \rightarrow q \ \mu^+\mu^- \ (\Lambda = m_{q^*} \ and \ f = f' = 1)$ complementary to $q^* \rightarrow jj$ decay channel

Searching for bump in Z p_T spectrum

- no deviation from SM predictions,
- set limits on M_{a*}

Gauge Interaction

Contact Interaction

Exceed HERA

limit > 252 GeV

1200

1000

1400

 m_{r} (GeV/c²)

EXO-10-016

Lepton Compositeness

Production via new contact interaction

- $qq \rightarrow ee^* \rightarrow ee\gamma$
- qq $\rightarrow \mu\mu^* \rightarrow \mu\mu\gamma$

Experimental signature:

- ullet 2 isolated e/ μ of opposite charge
- isolated photon ($\Delta R(\gamma, I) > 0.5$)

Searching for excess in data at high $M(e_{\gamma})$ or $M(\mu_{\gamma})$

• 0 event observed, set limits on M(e*) > 760 GeV, M(μ *) > 785 GeV for Λ = 2 (exceed Tevatron result)

Searches for TeV Scale Gravity

- RS Graviton
- Large Extra Dimension (ADD)
- Micro Black Holes

γγ: arXiv:1103.4279, submitted to JHEP

μμ: EXO-10-020

LED $(\gamma\gamma/\mu\mu)$

ADD Model

Looking for excess @ high mass in γγ/μμ spectrum

- no event observed with $M_{\gamma\gamma}(M_{\mu\mu}) > 500 (600) \ GeV$
- set limits on M_s vs n

 $M_s = UV$ cut-off in σ , n = # of extra dimensions

LED -Monojet

ADD Model one high p_T jet + large MET (a.k.a. Mono-jet)

- veto on leptons, dijets, cosmics, beam halo, instrumental backgrounds
- \bullet data consistent with SM, set limits on M_D vs δ

 M_D = Planks scale, δ = # of extra dimensions

N _{DATA}	275
N _{BKG} (data-driven)	297 ± 45
$N_{SIGNAL}(M_D=2,\delta=2)$	115.2
T 10 ⁴	

CMS limits on M_D (36 pb⁻¹)

δ	with K-factor**	
2	2.37 TeV	
3	1.98 TeV	
4	1.77 TeV	

** = 1.5 (1.4) for δ =2,3 (4)

δ	CDF	LEP
2	1.40 TeV	1.6 TeV
თ	1.15 TeV	1.2 TeV
4	1.04 TeV	0.94 TeV

PHENO 2011, Univ. Wisconsin-Madison

Summary Plot

18

PLB 697, 434 (2011)

Black Holes

Smoking gun signature of TeV scale gravity BH decay via Hawking radiation

- produce large number of energetic objects
- mostly quarks & gluons → jets

Search for deviation in S_T distribution in bins of object multiplicity (n; at least > 2)

• S_T = scalar sum of all objects with $p_T > 50 \text{ GeV}$

High multiplicity event

No excess observed in data Set limit on the minimum BH mass of 3.5 – 4.5 TeV in semi-classical approximation

First direct BH limits

Searches for Long-Lived Heavy Particles

- Heavy Stable Charged Particles
- Stopped Gluinos

PRL 106, 011801 (2011) JHEP 03, 024 (2011)

Long-Lived Particle

Long-Lived Heavy particles appear in many BSM (e.g. g in split SUSY)

- Since massive they are slow (β < 0.9)
- Gluinos hadronize forming R-Hadrons

We've performed searches for 2 distinctive signatures of LLH particles

- 1. Large dE/dx due to larger ionization for slow moving particles
- 2. Out-of-Time decays of particles which have come to rest before exiting the detector

Searches for Forth Generation

- b'
- ttbar Resonances

Pair produced 4th generation heavy quarks b'. each b' \rightarrow tW \rightarrow bWW

Like-sign dilepton & trileptopn (e,μ) decays + jets

Events selected based on leptons, N_{Jets}, large MET, &

$$S_T = \sum_{ ext{jets}} p_T + \sum_{ ext{leptons}} p_T + E_T$$

Like-sign dilepton & trilepton decays + 4(2) jets

 $N_{bgd} = 0.3 + - 0.2 \text{ events}$

0 event observed

PHENO 2011, Univ. Wisconsin-Madison

Limit @ 95% CL: $M_{b'} > 361 \text{ GeV}$

Similar to new Tevatron limit: $M_{b'} > 372 \text{ GeV}$

Top Pair Resonances

Bump hunt in M(ttbar) spectrum

- Lepton + jets channels (e & μ)
- No significant excess of events above SM
- Set limit on the production cross section, competitive with Tevatron

25 pb for $m_{z'}$ = 0.5 TeV, 7 pb for $m_{z'}$ = 1 TeV, 4 pb for $m_{z'}$ > 1.5 TeV

2011 and Beyond ...

Looking forward to see more of these events...

Conclusions

- CMS is searching for evidence of different models of new physics in several channels using the early LHC data & already exploring new territory beyond the Tevatron.
- Only recent results shown here.
 Many new physics searches are underway.
- No signals of the new physics observed in the early LHC data yet.
- More LHC data on the way;
 Analyses of ~230 pb⁻¹ data samples just beginning.
 New exciting results are in the pipe-line. Stay tune!

Extra Slides

