DM @ LEP

arXiv:1103.0240

Yuhsin Tsai

In collaboration with Patrick Fox, Roni Harnik, and Joachim Kopp

Madison/PHENO, 9 May 2011

16

Yuhsin Tsai Cornell/Fermilab

DM @ LEP

Earlier result: Bounds from Tevatron

Y. Bai et al. (10), J. Goodman et al. (10), J. Goodman et al. (11)

Direct Detection Bound from Tevatron

Y. Bai et al. (10), J. Goodman et al. (10), J. Goodman et al. (11)

- independent of astrophysical and experimental assumptions.
- good bounds on light DM.
- good bounds on spin dependent case.

Yuhsin Tsai Cornell/Fermilab

Jet \rightarrow Photon, Tevatron \rightarrow LEP

- In search of Large Extra Dimension (ADD)
- New physics channels: $e \bar{e} \rightarrow \gamma G$

DM @ LEP

Direct Detection Bound

- Assume DM particle is a Dirac fermion.
- Use shape analysis (χ^2) to contraint the size the coupling

Direct Detection Bound

- Assume DM particle is a Dirac fermion.
- Use shape analysis (χ^2) to contraint the size the coupling

Need the coupling to quarks!

Direct Detection Bound

- Assume DM particle is a Dirac fermion.
- Use shape analysis (χ^2) to contraint the size the coupling

Need the coupling to quarks!

Consider Two Possibilities:

- Equal Coupling: to quarks and leptons.
- Leptophilic: coupling to leptons only.

Equal couplings

Leptophilic: no tree-level coupling to q's

- Get loop suppression. \mathcal{O}_A , \mathcal{O}_S vanish at one loop.
- Leptophilic model proposed to explain DAMA or CoGeNt is ruled out.

Bounds for Indirect Detections

- Velocity suppression for scalar and axial-vector operators.
- Compare the cross section to the thermal-relic or the Fermi observation bounds.

Bounds for Indirect Detections

What happens if the mediator is light?

• When it is heavy, we consider contact operators only: $m_{
m Med} \gg 2 \, E_{
m beam}$

• When it can be on-shell, the kinematics is important: $m_{\rm Med} \ll 2 E_{\rm beam}$

Direct Detection w/ light mediator

Yuhsin Tsai Cornell/Fermilab DM @ LEP

16

Indirect Detection w/ Light Mediators

Yuhsin Tsai Cornell/Fermilab

DM @ LEP

¹²/16

Some Non-LEP Results

³/16

MonoPhoton @ Tevatron and LHC

Yuhsin Tsai Cornell/Fermilab

DM @ LEP

/16

4

MonoPhoton @ Tevatron and LHC

Yuhsin Tsai Cornell/Fermilab

Conclusion

• Mono-photon at LEP is important for direct detection bound.

• LEP bound gives good constrains on indirect detections.

• The bounds can be even more important for light mediators.

From raw data to direct detection bounds

$$\frac{d R}{d E_R} = N_T \frac{\rho_0}{m_{\chi}} \int_{v_{\min}}^{v_{esc}} d^3 v \frac{d \sigma}{d E_R} v f(v)$$

- DM density $ho_0 \sim 0.3 \, {
 m GeV} \, {
 m cm}^{-3}$
- Recoil energy $E_{\rm R} = E_{\rm obv} \, / \, q$ uenching $q_{\rm Na} = 0.3 \pm 0.1$, $q_{\rm I} = 0.09 \pm 0.03$
- Velocity distribution f(v) Maxwell-Boltzman
- Escape velocity $v_{\rm esc} \sim \, 650 \, {\rm km \, s^{-1}}$
- v_{\min} , (in-)elastic scattering?
- Spin Independent σ , Spin Dependent $\sigma(v)$.
- XXXX

Annihilation cross sections

 σ_S and σ_A are velocity suppressed:

$$\begin{split} \sigma_{S} \mathbf{v}_{rel} &= \beta \left(m_{\chi}^{2} - m_{\ell}^{2} \right) \mathbf{v}_{rel}^{2} ,\\ \sigma_{V} \mathbf{v}_{rel} &= \frac{1}{6} \beta \left(24(2m_{\chi}^{2} + m_{\ell}^{2}) + \frac{8m_{\chi}^{4} - 4m_{\chi}^{2}m_{\ell}^{2} + 5m_{\ell}^{4}}{m_{\chi}^{2} - m_{\ell}^{2}} \mathbf{v}_{rel}^{2} \right) ,\\ \sigma_{A} \mathbf{v}_{rel} &= \frac{1}{6} \beta \left(24m_{\ell}^{2} + \frac{8m_{\chi}^{4} - 22m_{\chi}^{2}m_{\ell}^{2} + 17m_{\ell}^{4}}{m_{\chi}^{2} - m_{\ell}^{2}} \mathbf{v}_{rel}^{2} \right) ,\\ \sigma_{t} \mathbf{v}_{rel} &= \frac{1}{24} \beta \left(24(m_{\chi} + m_{\ell})^{2} + \frac{(m_{\chi} + m_{\ell})^{2}(8m_{\chi}^{2} - 16m_{\chi}m_{\ell} + 11m_{\ell}^{2})}{m_{\chi}^{2} - m_{\ell}^{2}} \mathbf{v}_{rel}^{2} \right) ,\\ \beta &= \frac{1}{8\pi \Lambda^{4}} \sqrt{1 - \frac{m_{\ell}^{2}}{m_{\chi}^{2}}} . \end{split}$$

Yuhsin Tsai Cornell/Fermilab

Few remarks about the loop calculation

(show this if people stay awake)

The loop-suppressed cross section is

$$\sigma_{1-\text{loop}} \simeq \frac{4\alpha^2 \mu_p^2}{18^2 \pi^3 \Lambda^4} \cdot \left[\sum_{\ell=e,\mu,\tau} f(q^2, m_\ell)\right]^2$$

where
$$f(q^2, m_\ell) = \frac{1}{q^2} \left[5q^2 + 12m_\ell^2 + 6(q^2 + 2m_\ell^2) \sqrt{1 - \frac{4m_\ell^2}{q^2}} \operatorname{coth}^{-1} \left(\sqrt{1 - \frac{4m_\ell^2}{q^2}} \right) - 3q^2 \ln\left(\frac{m_\ell^2}{\Lambda_{\text{ren}}^2}\right) \right]$$

• Take the most conservative case (the largest σ): $v_{\chi} = v_{esc} = 500 \text{ km/sec}$, scattering angle 180°.

• This gives
$$q^2 = -4\mu_p^2 v_\chi^2$$
.

• Take the cutoff $\Lambda_{\rm ren}$ from the loop integral the same as the operator cutoff $\Lambda.$

Direct Detection bounds w/ light mediator

$$\mathcal{A} \propto \frac{g_e g_{\chi}}{q^2 - M^2 + iM\Gamma} = \frac{M^2}{q^2 - M^2 + iM\Gamma} \frac{g_e g_{\chi}}{M^2} \equiv (R \times \Lambda)^{-2} = \Lambda_{\exp}^{-2}$$

A: the cutoff in the plot. Λ_{exp} : the collider constrained cutoff.

S-channel

•
$$M \gg 2E_{\text{beam}}$$
: $\Lambda = \Lambda_{\text{exp}}$

• $M > 2E_{\text{beam}}$: $\Lambda \sim \frac{M}{\sqrt{M^2 - q^2}} \Lambda_{\text{exp}}$.

•
$$2m_{\chi} < M < 2E_{\text{beam}}$$
: $\Lambda \sim \left(\frac{M}{\Gamma}\right)^{\frac{1}{4}} \Lambda_{\exp}$.

•
$$M < 2m_{\chi}$$
: $\Lambda \sim \frac{M}{\sqrt{q^2 - M^2}} \Lambda_{\exp}$.

$\overline{\chi}\chi \overline{e}e$ 90% C.L. 90% C.L. 10^{4} $\Gamma = \Gamma_{mn}(m_{x})$ M = 200 GeV M = 200 GeV M = 100 GeV 10^{4} M = 10 GeV M = 10 GeV $WIMP \text{ mass } m_{\chi} \text{ [GeV]}$

T-channel

• For any M:
$$\Lambda = \frac{M}{\sqrt{|q|^2 + M^2}} \Lambda_{exp}$$

Direct Detection bounds w/ light mediator

$$\mathcal{A} \propto \frac{g_e g_{\chi}}{q^2 - M^2 + iM\Gamma} = \frac{M^2}{q^2 - M^2 + iM\Gamma} \frac{g_e g_{\chi}}{M^2} \equiv (R \times \Lambda)^{-2} = \Lambda_{\exp}^{-2}$$

A: the cutoff in the plot. Λ_{exp} : the collider constrained cutoff.

