New Parity-Violating Muonic Forces

David McKeen University of Victoria

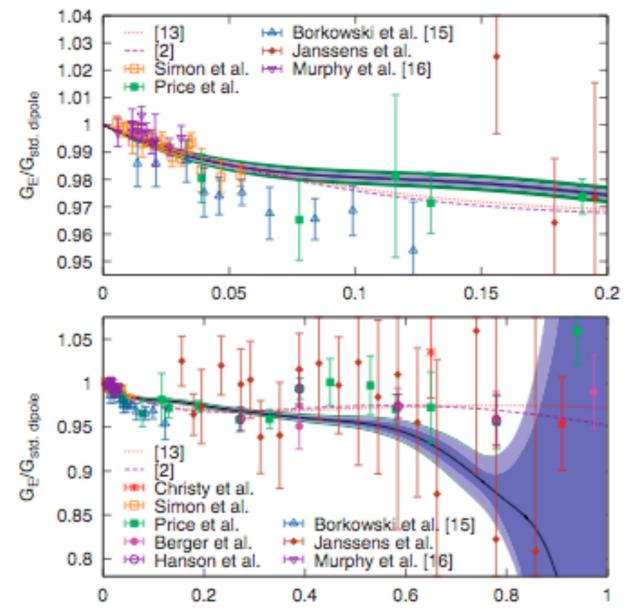
Based on

Brian Batell, DM, and Maxim Pospelov, arXiv:1103.0721

Outline

- Proton charge radius discrepancy
- A model with gauged RH muon number
- Implications of the model

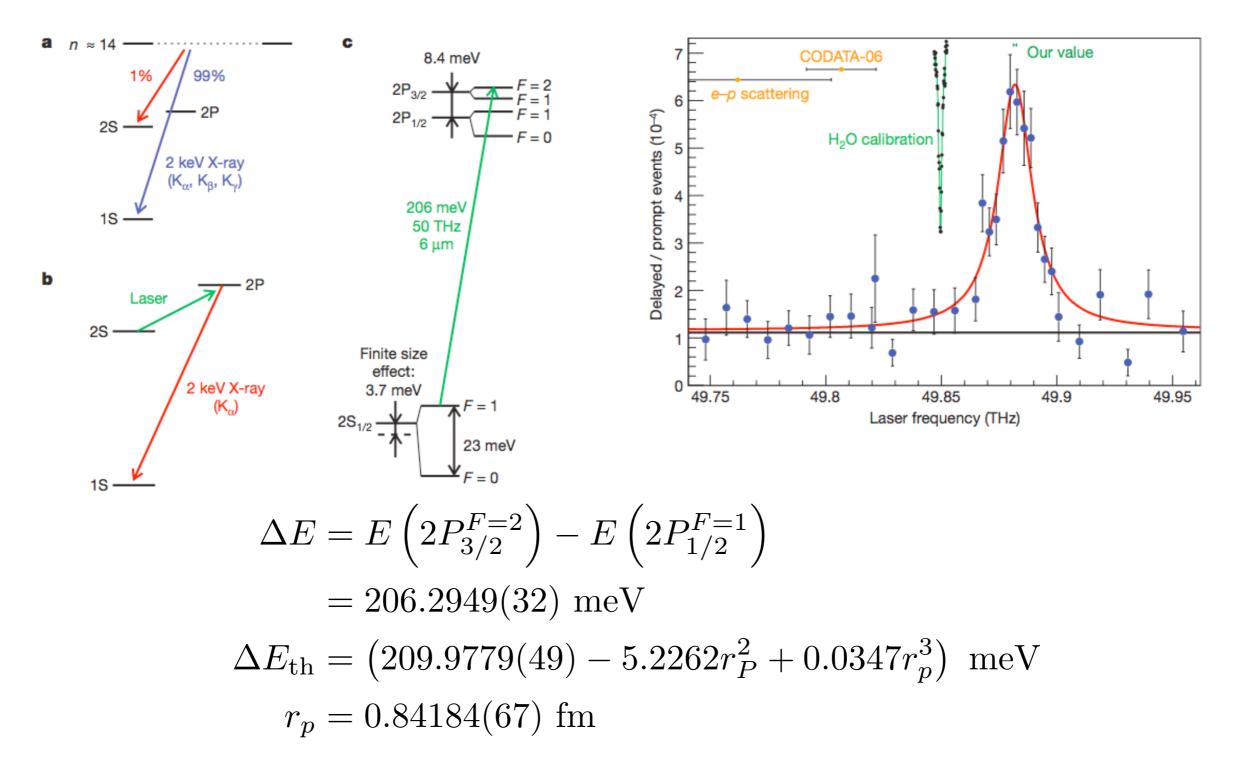
P. J. Mohr et al., Rev. Mod. Phys. 80, 633 (2008)


CODATA

A26	$\nu_{\rm H}(1S_{1/2}-2S_{1/2})$	2 466 061 413 187.074(34) kHz	1.4×10^{-14}	MPQ-04
A27	$\nu_{\rm H}(2S_{1/2}-8S_{1/2})$	770 649 350 012.0(8.6) kHz	1.1×10^{-11}	LK/SY-97
A28	$\nu_{\rm H}(2S_{1/2}-8D_{3/2})$	770 649 504 450.0(8.3) kHz	1.1×10^{-11}	LK/SY-97
A29	$\nu_{\rm H}(2S_{1/2}-8D_{5/2})$	770 649 561 584.2(6.4) kHz	8.3×10^{-12}	LK/SY-97
A30	$\nu_{\rm H}(2S_{1/2}-12D_{3/2})$	799 191 710 472.7(9.4) kHz	1.2×10^{-11}	LK/SY-98
A31	$\nu_{\rm H}(2S_{1/2}-12D_{5/2})$	799 191 727 403.7(7.0) kHz	8.7×10^{-12}	LK/SY-98
A32	$\nu_{\rm H}(2S_{1/2}-4S_{1/2})-\frac{1}{4}\nu_{\rm H}(1S_{1/2}-2S_{1/2})$	4 797 338(10) kHz	2.1×10^{-6}	MPQ-95
A33	$\nu_{\rm H}(2S_{1/2}-4D_{5/2})-\frac{1}{4}\nu_{\rm H}(1S_{1/2}-2S_{1/2})$	6 490 144(24) kHz	3.7×10^{-6}	MPQ-95
A34	$\nu_{\rm H}(2S_{1/2}-6S_{1/2})-\frac{1}{4}\nu_{\rm H}(1S_{1/2}-3S_{1/2})$	4 197 604(21) kHz	4.9×10^{-6}	LKB-96
A35	$\nu_{\rm H}(2S_{1/2}-6D_{5/2})-\frac{1}{4}\nu_{\rm H}(1S_{1/2}-3S_{1/2})$	4 699 099(10) kHz	2.2×10^{-6}	LKB-96
A36	$\nu_{\rm H}(2S_{1/2}-4P_{1/2})-\frac{1}{4}\nu_{\rm H}(1S_{1/2}-2S_{1/2})$	4 664 269(15) kHz	3.2×10^{-6}	YaleU-95
A37	$\nu_{\rm H}(2S_{1/2}-4P_{3/2})-\frac{1}{4}\nu_{\rm H}(1S_{1/2}-2S_{1/2})$	6 035 373(10) kHz	1.7×10^{-6}	YaleU-95
A38	$\nu_{\rm H}(2S_{1/2}-2P_{3/2})$	9 911 200(12) kHz	1.2×10^{-6}	HarvU-94
A39.1	$\nu_{\rm H}(2P_{1/2}-2S_{1/2})$	1 057 845.0(9.0) kHz	8.5×10^{-6}	HarvU-86
A39.2	$\nu_{\rm H}(2P_{1/2}-2S_{1/2})$	1 057 862(20) kHz	1.9×10^{-5}	USus-79
A40	$\nu_{\rm D}(2S_{1/2} - 8S_{1/2})$	770 859 041 245.7(6.9) kHz	8.9×10^{-12}	LK/SY-97
A41	$\nu_{\rm D}(2S_{1/2}-8D_{3/2})$	770 859 195 701.8(6.3) kHz	8.2×10^{-12}	LK/SY-97
A42	$\nu_{\rm D}(2S_{1/2}-8D_{5/2})$	770 859 252 849.5(5.9) kHz	7.7×10^{-12}	LK/SY-97
A43	$\nu_{\rm D}(2S_{1/2}-12D_{3/2})$	799 409 168 038.0(8.6) kHz	1.1×10^{-11}	LK/SY-98
A44	$\nu_{\rm D}(2S_{1/2}-12D_{5/2})$	799 409 184 966.8(6.8) kHz	8.5×10^{-12}	LK/SY-98
A45	$\nu_{\rm D}(2S_{1/2}-4S_{1/2})-\frac{1}{4}\nu_{\rm D}(1S_{1/2}-2S_{1/2})$	4 801 693(20) kHz	4.2×10^{-6}	MPQ-95
A46	$\nu_{\rm D}(2S_{1/2}-4D_{5/2})-\frac{1}{4}\nu_{\rm D}(1S_{1/2}-2S_{1/2})$	6 494 841(41) kHz	6.3×10 ⁻⁶	MPQ-95

- Fit a large number of H and D atomic transitions to determine R_{∞} , r_p , r_d
- Find $r_p = 0.8769(68)$ fm

J. C. Bernauer et al., PRL 105, 242001 (2010)



• Fit e-p scattering cross sections and extract charge radius: $r_p = 0.879(8)$ fm

R. Pohl et al., Nature 466, 213 (2010)

Muonic Hydrogen

Data Summary

- **H & D Spectroscopy:** $r_p = 0.8769(68) \text{ fm}$
- e-p Scattering: $r_p = 0.879(8) \text{ fm}$
- Muonic H: $r_p = 0.84184(67) \text{ fm}$
- e-p measurements agree with each other
- discrepancy (5.1 for spectroscopy and 4.6 for scattering) with muonic H

 Consider additional potential between leptons and protons given by exchange of particle V with spin s. Leads to:

$$\Delta r_p^2 = (-1)^{s+1} \frac{6g_{\ell}g_p}{e^2 m_V^2} \frac{(am_V)^4}{(1+am_V)^4} \qquad a = \frac{m_{\ell} + m_p}{\alpha m_{\ell} m_p}$$
$$\Delta r_p^2 \simeq 0.06 \text{ fm}^2 \Rightarrow \frac{g_{\ell}g_p}{m_V^2} \sim 10^4 G_F$$

New Forces (cont'd)

- The pattern of charge radii disfavors a simple attractive or repulsive proton-lepton force: (r_p)^H_{ep} ~ (r_p)^{scatt.}_{ep} > (r_p)^{μH}_{µp} ⇒ g_e ≪ g_µ
- (Old) neutron scattering experiments constrain couplings of MeV-scale particles to neutrons: g_n ≤ g_{ℓ,p}/10 ⇒ s = 1
- Neutrinos can't couple to a new force carrier this strongly: $g_{\nu} \ll g_{\mu}$

Gauged μ_R

- Suggests a possible resolution
- Gauge μ_R so that couplings to electrons and neutrinos are unimportant
- Couple to charge by kinetic mixing with the photon so that one couples to protons and not neutrons

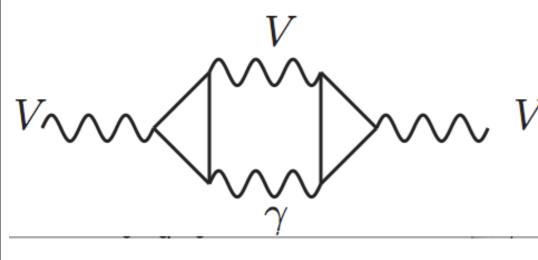
Gauged μ_R (cont'd)

The Lagrangian is

$$\mathcal{L} = -\frac{1}{4}V_{\alpha\beta}^{2} + |D_{\alpha}\phi|^{2} + \bar{\mu}_{R}i\not{D}\mu_{R} - \frac{\kappa}{2}V_{\alpha\beta}F^{\alpha\beta} - \mathcal{L}_{m}$$
$$D_{\mu} = \partial_{\mu} + ig_{R}Q_{R}V_{\mu} + ieQ_{EM}A_{\mu}$$
$$\mathcal{L}_{m} = \bar{L}\mu_{R}H_{SM}\frac{\phi}{\Lambda} + \text{h.c.} \rightarrow \frac{vv_{R}}{2\Lambda}\bar{\mu}\mu \qquad \langle\phi\rangle \equiv v_{R}/\sqrt{2}$$
$$m_{V} = g_{R}v_{R}$$

$$m_S = \sqrt{\lambda} v_R$$

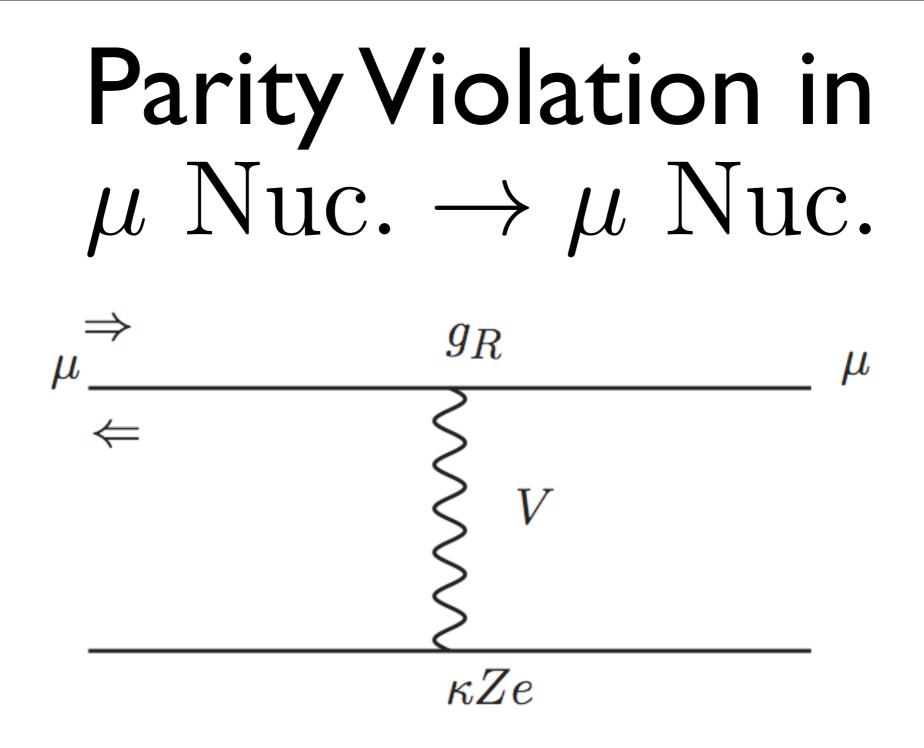
Gauged μ_R (cont'd) g_R μ Leads to a new muonproton interaction through this diagram. Its strength is characterized by $\eta \equiv \frac{\kappa g_R}{2e}$


e

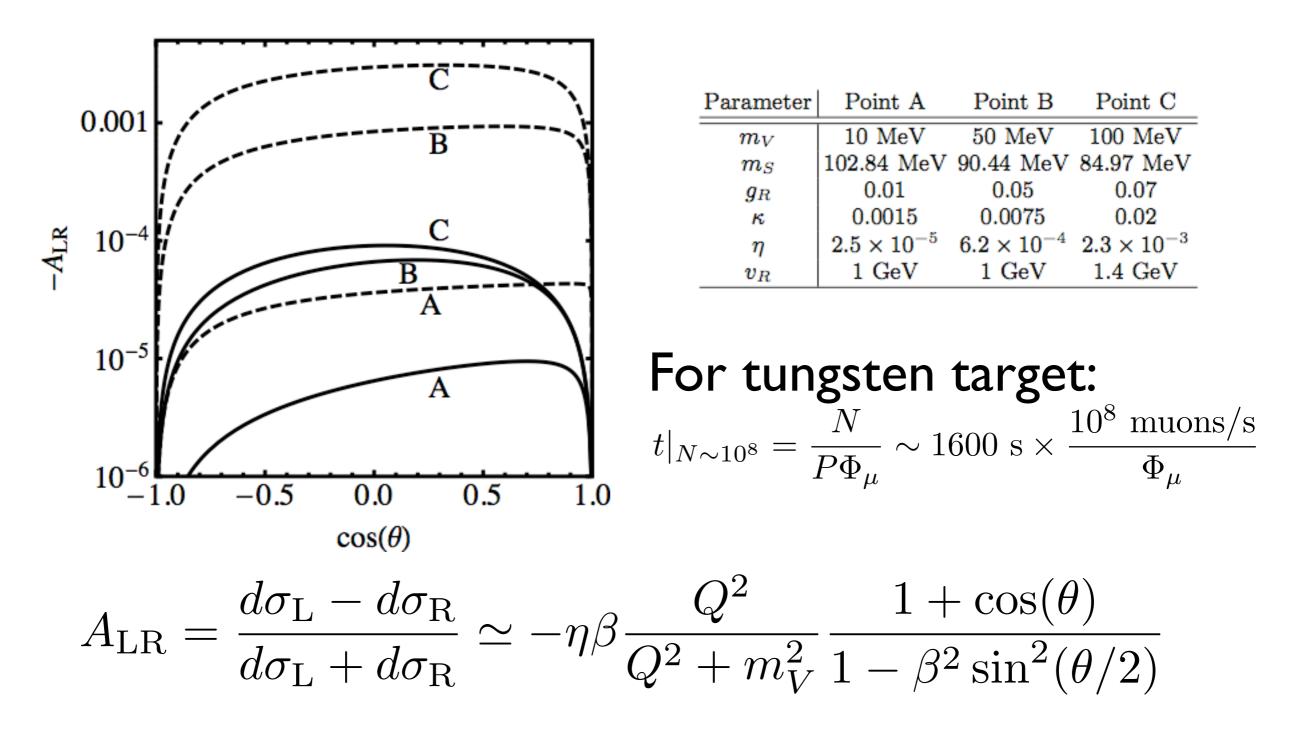
$$\frac{\eta}{m_V^2} \simeq \frac{\Delta r_p^2}{6} \simeq 0.01 \text{ fm}^2 \simeq \frac{2.5 \times 10^{-5}}{(10 \text{ MeV})^2} \simeq 2.5 \times 10^4 G_F$$

Gauged μ_R (cont'd)

- This model is anomalous (canceling anomalies by gauging quarks as well causes flavor issues)
 - Maintain gauge invariance but sacrifice renormalizability
- EFT valid up to some scale


$$\Lambda_{UV} \le \frac{(4\pi)^3}{eg_R^2} m_V \sim 700 \text{GeV} \left(\frac{m_V}{10 \text{ MeV}}\right) \left(\frac{g_R}{e}\right)^{-2}$$

Constraints


- g-2 requires fine cancellation between V and S
- Muonic Mg and Si set a lower limit $m_V \gtrsim {
 m MeV}$
- Fixed target limits on kinetic mixing modulo decay channels
- Can find wide range of parameters

	Parameter	Point A	Point B	Point C
m_V		10 MeV	50 MeV	100 MeV
	m_S	102.84 MeV	$90.44 \mathrm{MeV}$	84.97 MeV
	g_R	0.01	0.05	0.07
	κ	0.0015	0.0075	0.02
	η	$2.5 imes10^{-5}$	$6.2 imes10^{-4}$	$2.3 imes10^{-3}$
	v_R	1 GeV	1 GeV	$1.4 \mathrm{GeV}$

Cross sections for LH and RH scattering on nuclei are different

Parity Violation in μ Nuc. $\rightarrow \mu$ Nuc.

2S-2P Mixing in muonic He

- Could possibly be probed in muonic He Lamb shift experiment
- MI matrix element much smaller than EI. Look for single photon 2S to IS decay:

$$\Gamma^{\gamma}_{2s \to 1s} / \Gamma^{\gamma \gamma}_{2s \to 1s} \simeq 0.018$$

Muonic He Lamb shift

• This model gives the same shift in the charge radius of muonic He vs. standard He Δu^2 as 0.00 fm²

$$\Delta r_{\rm He}^2 \simeq 0.06 \ {\rm fm}^2$$

• Await their results...

Conclusions

- Proton charge radius extraced from muonic H appears to be in conflict with that from e-p systems
- Difficult to explain with new physics
- Gauging RH muon # could offer a solution
- This leads to new PV observables that can be probed with existing facilities