

The Charge Radius of the Proton

Gil Paz

Enrico Fermi Institute, The University of Chicago

Richard J. Hill, GP PRD 82 113005 (2010)

Richard J. Hill, GP [arXiv:1103.4617]

Form Factors

• Matrix element of EM current between nucleon states give rise to two form factors $(q = p_f - p_i)$

$$\langle p(p_f)|\sum_q e_q \, \bar{q}\gamma^\mu q|p(p_i)
angle = \bar{u}(p_f)\left[\gamma_\mu F_1(q^2) + rac{i\sigma_{\mu\nu}}{2m}F_2(q^2)q_
u
ight]u(p_i)$$

• Sachs electric and magnetic form factors

$$G_E(q^2) = F_1(q^2) + \frac{q^2}{4m_p^2}F_2(q^2)$$
 $G_M(q^2) = F_1(q^2) + F_2(q^2)$
 $G_E^p(0) = 1$ $G_M(0) = \mu_p \approx 2.793$

• The slope of G_F^p

$$\langle r^2 \rangle_E^p = 6 \frac{dG_E^p}{dq^2} \bigg|_{q^2=0} \quad \text{or} \quad G_E^p(q^2) = 1 + \frac{q^2}{6} \langle r^2 \rangle_E^p + \dots,$$

determines the charge radius $r_{E}^{p} \equiv \sqrt{\langle r^{2} \rangle_{E}^{p}}$

Charge radius from atomic physics

$$\langle p(p_f)|\sum_{q}e_q\,\bar{q}\gamma^{\mu}q|p(p_i)\rangle=\bar{u}(p_f)\left[\gamma_{\mu}F_1^{p}(q^2)+\frac{i\sigma_{\mu\nu}}{2m}F_2^{p}(q^2)q_{\nu}\right]u(p_i)$$

• For a point particle amplitude for $p + \ell \rightarrow p + \ell$

$$\mathcal{M} \propto \frac{1}{q^2} \quad \Rightarrow \quad U(r) = -\frac{Z\alpha}{r}$$

• Including q^2 corrections from proton structure

$$\mathcal{M} \propto rac{1}{g^2}q^2 = 1 \quad \Rightarrow \quad U(r) = rac{4\pi Z lpha}{6} \delta^3(r) (r_E^p)^2$$

ullet Proton structure corrections $\Big(m_r=m_\ell m_p/(m_\ell+m_p)pprox m_\ell\Big)$

$$\Delta E_{r_E^p} = \frac{2(Z\alpha)^4}{3n^3} m_r^3 (r_E^p)^2 \delta_{\ell 0}$$

Muonic hydrogen can give the best measurement of r_F^p!

Charge radius from atomic physics

- Lamb shift in muonic hydrogen [Pohl et al. Nature 466, 213 (2010)] $r_E^p = 0.84184(67)$ fm
- CODATA value [Mohr et al. RMP 80, 633 (2008)] $r_E^p = 0.8768(69)$ fm extracted mainly from (electronic) hydrogen
- 5σ discrepancy!
- We can also extract it from electron-proton scattering data

The recent discrepancy

- [Hill, GP PRD 82 113005 (2010)] showed previous extractions are model dependent underestimated the error by a factor of 2 or more
- Based on a model-independent approach using scattering data from proton, neutron and $\pi\pi$ [Hill, GP PRD **82** 113005 (2010)] $r_F^p = 0.871(11)$ fm
- CODATA value (extracted mainly from electronic hydrogen) [Mohr et al. RMP **80**, 633 (2008)] $r_F^p = 0.8768(69)$ fm
- Lamb shift in muonic hydrogen [Pohl et al. Nature **466**, 213 (2010)] $r_E^p = 0.84184(67)$ fm

Lamb shift in muonic hydrogen

• CREMA measured [Pohl et al. Nature 466, 213 (2010)]

$$\Delta E = 206.2949 \pm 0.0032 \; \mathrm{meV}$$

Comparing to the theoretical expression

[Pachucki PRA 60, 3593 (1999), Borie PRA 71(3), 032508 (2005)]

$$\Delta E = 209.9779(49) - 5.2262(r_E^p)^2 + 0.0347(r_E^p)^3 \text{ meV}$$

They got

$$r_F^p = 0.84184(67) \text{ fm}$$

The Theoretical Prediction

• Is there a problem with the theoretical prediction?

[Pachucki PRA **60**, 3593 (1999), Borie PRA **71**(3), 032508 (2005)]
$$\Delta E = 209.9779(49) - 5.2262(r_E^p)^2 + 0.0347(r_E^p)^3 \text{ meV}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \text{mostly} \qquad \text{already} \qquad \text{where does}$$

$$\mu \text{ QED} \qquad \text{discussed} \qquad \text{this term}$$
 come from?

Two-photon amplitude: "standard" calculation

- "standard" calculation: separate to proton and non-proton
- non-proton \leftrightarrow DIS
- For proton
- Insert form factors into vertices

$$\mathcal{M} = \int_0^\infty dq^2 f(G_E, G_M)$$

- Using a "dipole form factor"

$$G_i(q^2) \approx G_i(q^2)/G_i(0) \approx [1 - q^2/\Lambda^2]^{-2}$$

- ${\mathcal M}$ is a function of $\Lambda \Rightarrow (r_E^p)^3$ term
- Using, $\Lambda^2=0.71\,\mathrm{GeV}^2\Rightarrow\Delta E\approx0.018$ meV [K. Pachucki, PRA **53**, 2092 (1996)]

Two-photon amplitude: "standard" calculation

- Is insertion of form factors in vertices valid?
- Even if it is, result looks funny two-photon amplitude
 ⇔ the charge radius only for one parameter model for G_E and G_M
- In "standard approach" two-photon $\Rightarrow \Delta E \approx 0.018 \text{ meV}$ Need $0.258(90) \, \text{meV}$ (scattering) or $0.311(63) \, \text{meV}$ (spec.) to explain discrepancy

NRQED

Model Independent approach: use NRQED

[Caswell, Lepage PLB **167**, 437 (1986); Kinoshita Nio PRD **53**, 4909 (1996); Manohar PRD **56**, 230 (1997)]

$$\mathcal{L}_{e} = \psi_{e}^{\dagger} \left\{ iD_{t} + \frac{\mathbf{D}^{2}}{2m_{e}} + \frac{\mathbf{D}^{4}}{8m_{e}^{3}} + c_{F}e\frac{\boldsymbol{\sigma} \cdot \mathbf{B}}{2m_{e}} + c_{D}e\frac{[\boldsymbol{\partial} \cdot \mathbf{E}]}{8m_{e}^{2}} \right.$$

$$+ ic_{S}e\frac{\boldsymbol{\sigma} \cdot (\mathbf{D} \times \mathbf{E} - \mathbf{E} \times \mathbf{D})}{8m_{e}^{2}} + c_{W1}e\frac{\{\mathbf{D}^{2}, \boldsymbol{\sigma} \cdot \mathbf{B}\}}{8m_{e}^{3}}$$

$$- c_{W2}e\frac{D^{i}\boldsymbol{\sigma} \cdot \mathbf{B}D^{i}}{4m_{e}^{3}} + c_{p'p}e\frac{\boldsymbol{\sigma} \cdot \mathbf{D}\mathbf{B} \cdot \mathbf{D} + \mathbf{D} \cdot \mathbf{B}\boldsymbol{\sigma} \cdot \mathbf{D}}{8m_{e}^{3}}$$

$$+ ic_{M}e\frac{\{\mathbf{D}^{i}, [\boldsymbol{\partial} \times \mathbf{B}]^{i}\}}{8m_{e}^{3}} + c_{A1}e^{2}\frac{\mathbf{B}^{2} - \mathbf{E}^{2}}{8m_{e}^{3}} - c_{A2}e^{2}\frac{\mathbf{E}^{2}}{16m_{e}^{3}} + \dots \right\}\psi_{e}$$

Need also

$$\mathcal{L}_{\mathrm{contact}} = d_1 \frac{\psi_p^\dagger \boldsymbol{\sigma} \psi_p \cdot \psi_e^\dagger \boldsymbol{\sigma} \psi_e}{m_e m_p} + d_2 \frac{\psi_p^\dagger \psi_p \psi_e^\dagger \psi_e}{m_e m_p}$$

NRQED

• From c_i and d_i determine proton structure correction, e.g.

$$\delta E(n,\ell) = -\delta_{\ell 0} \frac{m_r^3 (Z\alpha)^3}{\pi n^3} \frac{d_2}{m_e m_p}$$

- Matching
- Operators with one photon coupling: c_i given by $F_i^{(n)}(0)$
- Operators with only two photon couplings: c_{A_i} given by forward and backward Compton scattering
- d_i from two-photon amplitude

Two-photon amplitude: matching

$$\begin{split} &\frac{1}{2} \sum_{s} i \int d^4 x \, \mathrm{e}^{iq \cdot x} \langle \mathbf{k}, s | T\{J_{\mathrm{e.m.}}^{\mu}(x) J_{\mathrm{e.m.}}^{\nu}(0)\} | \mathbf{k}, s \rangle \\ &= \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) W_1 + \left(k^{\mu} - \frac{k \cdot q \, q^{\mu}}{q^2} \right) \left(k^{\nu} - \frac{k \cdot q \, q^{\nu}}{q^2} \right) W_2 \end{split}$$

Matching

$$\begin{split} &\frac{4\pi m_r}{\lambda^3} - \frac{\pi m_r}{2m_e m_p \lambda} - \frac{2\pi m_r}{m_p^2 \lambda} \left[F_2(0) + 4m_p^2 F_1'(0) \right] \\ &- \frac{2}{m_e m_p} \left[\frac{2}{3} + \frac{1}{m_p^2 - m_e^2} \left(m_e^2 \log \frac{m_p}{\lambda} - m_p^2 \log \frac{m_e}{\lambda} \right) \right] + \frac{d_2(Z\alpha)^{-2}}{m_e m_p} \\ &= - \frac{m_e}{m_p} \int_{-1}^1 dx \sqrt{1 - x^2} \int_0^\infty dQ \, \frac{Q^3}{(Q^2 + \lambda^2)^2 (Q^2 + 4m_e^2 x^2)} \\ &\times \left[(1 + 2x^2) W_1(2im_p Qx, Q^2) - (1 - x^2) m_p^2 W_2(2im_p Qx, Q^2) \right] \end{split}$$

d_2

• In order to determine d_2 need to know W_i

can be extracted from on-shell quantities: Proton form factors and Inelastic structure functions

• To find W_i from Im W_i , need dispersion relations

Dispersion relation

• Dispersion relations ($\nu=2k\cdot q,\ Q^2=-q^2$)

$$W_1(\nu, Q^2) = W_1(0, Q^2) + \frac{\nu^2}{\pi} \int_{\nu_{\text{cut}}(Q^2)^2}^{\infty} d\nu'^2 \frac{\text{Im} W_1(\nu', Q^2)}{\nu'^2(\nu'^2 - \nu^2)}$$

$$W_2(\nu, Q^2) = rac{1}{\pi} \int_{
u_{
m cut}(Q^2)^2}^{\infty} d
u'^2 rac{{
m Im} W_2(
u', Q^2)}{
u'^2 -
u^2}$$

- W₁ requires subtraction...
- $\operatorname{Im} W_i^p$ from form factors
- $\operatorname{Im} W_i^c$ from DIS
- What about $W_1(0, Q^2)$?

$$W_1(0, Q^2)$$

- Can calculate in two limits:
- $Q^2 \ll m_p^2$ The photon sees the proton "almost" like an elementary particle Use NRQED to calculate $W_1(0,Q^2)$ upto $\mathcal{O}(Q^2)$ (including)

$$W_1(0, Q^2) = 2(c_F^2 - 1) + 2\frac{Q^2}{4m_p^2} \left(c_{A_1} + c_F^2 - 2c_F c_{W1} + 2c_M\right)$$

- $Q^2\gg m_p^2$ The photon sees the quarks inside the proton Use OPE to find $W_1(0,Q^2)\sim 1/Q^2$ for large Q^2
- In between you will have to model!
 Current calculation pretends there is no model dependence
 How big is the model dependence?

Bound State Energy

1) Proton: Im W_i^p using dipole form factor

$$\Delta E = -0.016 \text{ meV}$$

2) Continuum: Im W_i^c [Carlson, Vanderhaeghen arXiv:1101.5965]

$$\Delta E = 0.0127(5) \text{ meV}$$

3) What about $W_1(0, Q^2)$?

"Sticking In Form Factors" (SIFF) model

$$W_1^{\text{SIFF}}(0, Q^2) = 2F_2(2F_1 + F_2) \quad F_i \equiv F_i(Q^2)$$

SIFF

"Sticking In Form Factors" (SIFF) model

$$W_1^{\rm SIFF}(0,Q^2) = 2F_2(2F_1 + F_2) \quad F_i \equiv F_i(Q^2)$$

Notice that for large Q^2 , $W_1^{\rm SIFF}(0,Q^2) \propto 1/Q^8$ In contradiction to OPE

There is no local Lagrangian that has a Feynman rule

$$\gamma_{\mu}F_1(q^2)+rac{i\sigma_{\mu
u}}{2m}F_2(q^2)q_{
u}$$

Numerically using the dipole form factor

$$\Delta E^{\text{SIFF}} = 0.034 \text{ meV}$$

Model Dependence

• How big is the model dependence?

$$\begin{array}{cccc} 0.018\,\mathrm{meV} & & -0.016\,\mathrm{meV} & + & 0.034\,\mathrm{meV} \\ & & \uparrow & & \uparrow \\ & & \text{Model independent} & & \text{Model dependent} \end{array}$$

- The model dependent piece is the dominant one!
- ullet Experimental discrepancy \sim 0.3 meV
- Can we find a model that explains (or reduces) the discrepancy?

Conclusions

 Recent discrepancy in the extraction the proton charge radius between muonic and regular hydrogen

Conclusions

- Recent discrepancy in the extraction the proton charge radius between muonic and regular hydrogen
- From **model independent** extraction of the charge radius from e p scattering data: $r_F^p = 0.871(11) \,\text{fm}$
- Previous extractions have underestimated the error
- Results are compatible with CODATA value of $r_E^p = 0.8768(69)$ fm

Conclusions

- Analyzed Proton structure effects in hydrogenic bound states
 Using NRQED
- Isolated model-**dependent** assumptions in previous analyses: $W_1(0, Q^2)$ was calculated by "Sticking In Form Factors" model
- Model independent calculation of W₁(0, Q²): low Q² via NRQED, high Q² via OPE
 In between one has to model
- Possibility for a significant new effects in the two-photon amplitude
- NRQED predicts a universal shift for spin-independent energy splittings in muonic hydrogen.

Future Directions

- Analyze spin dependent effects
- Application to deuterium
- Resolution of the discrepancy?