Flavor-Changing Top Decays at the LHC

J. Sayre

Homer L. Dodge Department of Physics University of Oklahoma

Based on work with C. Kao

Flavor-Changing Top Decays at the LHC - p. 1/15

Flavor Changing Neutral Currents

The Standard Model conserves flavor in neutral current vertices: γ , g, Z, and h. Beginning with general Yukawa couplings:

$$\mathscr{L} = Y_{u}^{ij} Q_{i} \phi u_{j}^{c} + Y_{d}^{ij} Q_{i} \phi^{*} d_{j}^{c} + Y_{e}^{ij} L_{i} \phi^{*} e_{j}^{c} + h.c.$$

Generations are redefined by unitary rotations:

$$u^c \to U_{uR} u^c, \quad d^c \to U_{dR} d^c,$$

 $U_{uL}^{\dagger} Y_u U_{uR} = M_u(diag)$

$$u_{c}^{\dagger} D u_{c} \rightarrow u_{c}^{\dagger} U_{uR}^{\dagger} \quad D \quad U_{uR} u_{c} = u_{c}^{\dagger} D u_{c}$$
$$Q^{\dagger} D Q \rightarrow u^{\dagger} U_{uL}^{\dagger} \quad W^{+} \quad U_{dL} d = u^{\dagger} V_{CKM} d \quad W^{+}$$

-Only charged currents show flavor changing due to misaligned unitary

Two Higgs Doublet Models

Natural to extend Standard Model with additional Higgs doublets. Required in Supersymmetry, SO(10) Unification, etc. Generically, all doublets couple to all SM fermions.

$$\mathscr{L} = Y_{u1}Q\phi_1 u^c + Y_{d1}Q\phi_1^* d^c + Y_{e1}L\phi_1^* e^c + Y_{u2}Q\phi_2 u^c + Y_{d2}Q\phi_2^* d^c + Y_{e2}L\phi_2^* e^c$$

$$M_u = U_{uL}^{\dagger} (Y_{u1}v_1 + Y_{u2}v_2) U_{uR}$$
$$uU_{uL}^{\dagger} Y_{u1} U_{uR} u^c (\cos(\beta)h^0 + \sin(\beta)H^0) \neq uM_u u^c h$$

FCNCs arise *unless* each Higgs doublet couples to only one charge-type of quark or only one Higgs couples to fermions.

Models with FCNCs

- MSSM requires two doublets but with separate "up-type" and "down-type" couplings. However, SUSY-breaking effects and loops will induce FCNCs.
- All Multi-Doublet Models will generically have FCNCs unless controlled by symmetries.
- Flavor-changing effects from light-quarks are strongly constrained from measurements of $K^0 \overline{K}^0$, $B^0 \overline{B}^0$, $D^0 \overline{D}^0$ masses and kaon CP violation. (Atwood, Reina and Soni, 1997)
- *However*, currents involving the top quark may be much larger. Experimental constraints are weak for t.

Moreover, large m_t may indicate a special role for the top. e.g.-It may be the only fermion coupled to one doublet with a large vev in a 2HDM. (Kao and Das, 1996)

Top Quarks with FCNCs

For a general effective model with FCNCs, we can write the top quark coupling:

$$\mathscr{L} = \frac{g_W}{2\sqrt{2}}g_{tq}\overline{q}(c_v + c_a\gamma_5)th^0 + h.c.$$

$$g_W = \frac{e^2}{\sin \theta_W}, \quad |c_v|^2 + |c_a|^2 = 1$$

SM: $g_{tc} \sim 10^{-6}$ (Mele, Petrarca and Soddu, 1998)MSSM: $g_{tc} \sim 0.04$ (Gausch and Sola, 1999)2HDM: $g_{tc} \simeq \frac{\sqrt{2m_t m_c}}{m} \sim 0.27$

 g_{tu} also possible but typically much smaller.

Flavor-Changing Top Decays at the LHC - p. 5/15

Top Quark Decays

For non-SM models, g_{tc} may be detected in rare top decays $t \rightarrow ch^0$, involving the lightest neutral Higgs. (Branco and Aguilar-Saavedra, 2000)

For $g_{tc} = \frac{\sqrt{2m_t m_c}}{m_W}$ and $m_h = 120 \text{ GeV}$:

$$BF(t \to ch^0) = 2.62 \times 10^{-3}$$

 $g_{hbb} \propto m_b(m_h)$. Typically at 120 GeV:

$$BF(h \to b\overline{b}) \simeq 0.7$$

Enhanced for $tan(\beta) > 1$.

Search for $t \to ch^0 \to cb\overline{b}$ is best channel for light Higgs.

Search Channel

We consider $PP \rightarrow t\overline{t} \rightarrow cb\overline{b}bl^{-}\nu_{l}$. $(l = e, \mu)$ $g \bigcirc 0 \bigcirc 0$ $f \longrightarrow b$ $h \longrightarrow b$ $h \longrightarrow b$ $h \longrightarrow b$ $h \longrightarrow b$ $b \longrightarrow b$

Plus crossings, gluon fusion and $q - \overline{q}$ fusion. Signature:

- 🍠 4 jets
- 3 b-tagged jets
- 1 charged lepton
- Missing E_T

Backgrounds

Primary background is $PP \rightarrow t\overline{t} \rightarrow cb\overline{s}\overline{b}l^-\nu_l$ with *c* mis-tagged as a *b*.

Other backgrounds found to be negligible after cuts/tagging:

 $pp \to (t \to cb\overline{s})\overline{b}l^-\nu_l$

$$pp \to no t \to cb\overline{s}\overline{b}l^-\nu_l$$

$$pp \to b\overline{b}b\overline{b}l^-\nu_l$$

 $pp \to c\overline{c}b\overline{b}l^-\nu_l$

Top Reconstruction

We look for one leptonicly decaying top, but lose information due to neutrino.

Assume *MET* comes primarily from neutrino but must estimate k_L^{ν} .

Technically two unknown variables, but since we assume it is a neutrino, E^{ν} is determined.

ightarrow Require that $k_L^{
u}$ satisfy

 $(k^{\nu} + p^l)^2 = m_W^2$

Flavor-Changing Top Decays at the LHC - p. 9/15

Top Reconstruction II

Assuming an on-shell W, k_L can be solved for:

$$k_L = \frac{p_L(2p_T.k_T + m_W^2 - m_l^2) \pm p_0\sqrt{(2p_T.k_T + m_W^2 - m_l^2)^2 - 4k - T^2(m_l^2 + p_T^2)}}{m_l^2 + p_T^2}$$

where $p_T k_T = p_x k_x + p_y k_y$.

Quadratic equation leaves a choice of sign, we select whichever leads to a better reconstruction of the top-quark mass.

$$\min[m_t^2 - (k^{\nu} + p^l + p^b)^2]$$

Event Reconstruction

Begin with 3 b-tagged jets + 1 untagged jet + 1 charged lepton + MET. Apply basic cuts:

- $p_T(b_1, b_2, b_3) > 50, 35, 20 \text{ GeV}$
- $p_T(j) > 20 \text{ GeV}$
- **9** $p_T(l) > 20 \text{ GeV}$
- MET > 20 GeV
- $\Delta_R(jj, jl) > 0.5$

Reconstruction cuts:

- Search over three possible <u>bb</u> pairs.
- **P** Require $|m_{bb} m_h| < 0.2 * m_h$
- **P** Require $|m_{bbj} m_t| < 0.2 * m_t$
- Setimate k^{ν} as above. Use remaining **b** to reconstruct \overline{t}

P Require
$$|m_{bl\nu} - m_t| < 0.2 * m_t$$

W-veto

The cuts listed above do a good job of selecting out background *except* for $t\overline{t} \rightarrow cb\overline{s}\overline{b}l^{-}\nu_{l}$.

Both signal and background have $m_{bbj} \sim m_t$, $m_{l,\nu} \sim m_W$, $m_{bl\nu} \sim m_t$.

Only $m_{bb} \sim m_h$ peak is effective discriminant. Narrower *t* windows will improve signal vs. other backgrounds but tend to limit significance against $t\overline{t}$.

- \rightarrow Make use of second W in background.
 - \bullet $c\overline{s}$, tagged as bj should have a peak near m_W

 - Select min $[|m_{bj} m_W|]$
 - **P** Require $|m_{bj} m_W| > 5$ GeV

Implementation

We add the flavor changing vertex to MadGraph4 to generate parton-level results.

We choose $\mu_F = \mu_R = \sqrt{\hat{s}}$, applying a K-factor of 2. α_s is calculated at LO and we use CTEQ6L1 PDFs. For results below, we set $g_t c = \frac{\sqrt{2m_t m_c}}{m_W} \simeq 0.27$ and use $BF(h \to b\overline{b})$ for a SM-like higgs.

Generated events can be passed to Pythia 6.4, then PGS4. (Cone algorithm with $R_{cone} = 0.5$.)

Tagging efficiencies

Quark-type	(Mis)tag rate		
b	60%		
С	10%		
u,d,s	1%		

Predicted Detection Rates

(Work in progress.) At the LHC, assuming $\sqrt{s} = 14$ TeV.

Higgs mass	$N_S(30\mathrm{fb}^-1)$	$N_B(30\mathrm{fb}^-1)$	$N_S/\sqrt{N_B}$	Detection Luminosity
120	171	4263	2.65	107
120*	63	687	2.4	130
130	85	3882	1.36	405
130^{\dagger}	41	1083	1.23	495

*- We require a more aggressive W-veto, reject events if $65 < m_{bj} < 100$ GeV. We also require a tighter *t* window: $150 < m_{bbj} < 190$ GeV.

 \dagger - 70 < m_{bj} < 95 GeV and 150 < m_{bbj} < 190 GeV

Summary

- Flavor Changing Neutral Currents may arise in many models with additional Higgs.
- In particular, the top quark may have relatively large FCNC couplings.
- If so, the top can decay to a Higgs plus charm.
- We make use of several kinematic features to reconstruct the event and discriminate against background.
- Detecting such a decay will require a large amount of data. Improvements can be made with excellent *b*-tagging and jet reconstruction.