Isospin Violating Dark Matter

at CRESST, COUPP and KamLAND

Jason Kumar University of Hawaii

Isospin Violating Dark Matter

- as David showed, IVDM implies that event rates at direct detection experiments depend non-trivially on the material used
 - can reconcile DAMA, CoGeNT, and Xenon10/100
- makes harder the problem of comparing results from different experiments
- two related questions
 - how do we check signal from one experiment at another?
 - given some signals from experiments, is there a prediction for a different experiment?
- this talk will have two focusses
 - direct detection (CRESST, COUPP)
 - CRESST has a preliminary signal consistent with low mass dark matter
 - given the DAMA and CoGeNT signals, what is the implication for CRESST?
 COUPP?
 - neutrino detectors (KamLAND)
 - ideal place to cross-check IVDM

CRESST

- event rates from two different materials are sufficient to determine f_n, f_p
- to reconcile DAMA, CoGeNT we'd need f_n / f_p ~ -0.7
- if CRESST signal is dark matter, it's in the oxygen band
 prediction for CRESST signal
- can parameterize as
 "normalized to nucleon," as
 they would report if assuming
 f_n= f_p

$$\sigma_{A} = \frac{\mu_{A}^{2}}{M_{*}^{4}} [f_{p}Z + f_{n}(A - Z)]^{2}$$

$$\sigma_N^Z = \sigma_p \frac{\sum_i \eta_i \mu_{A_i}^2 \left[Z + \left(f_n / f_p \right) (A - Z) \right]^2}{\sum_i \eta_i \mu_{A_i}^2 A_i^2}$$

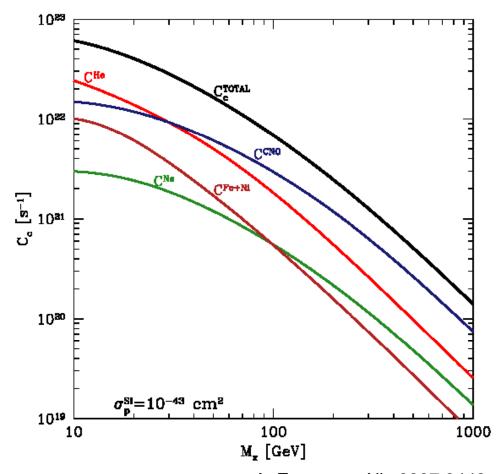
$$\sigma_N^{Z=O} \approx 8.5 \times \sigma_N^{Z=Ge}$$

COUPP

- can play a similar game with COUPP
 - CF₃I detector
 - slightly tougher, since multiple elements
 - can separate iodine recoils from energy spectrum, but might be harder to separate carbon and fluorine recoils

- as with CRESST, can find the "normalized to nucleon" cross-section for carbon and fluorine
 - COUPP might report something between these
 - about the same as CRESST
 - a little higher than CoGeNT

$$\sigma_N^{Z=C} \approx 8.4 \times \sigma_N^{Z=Ge}$$

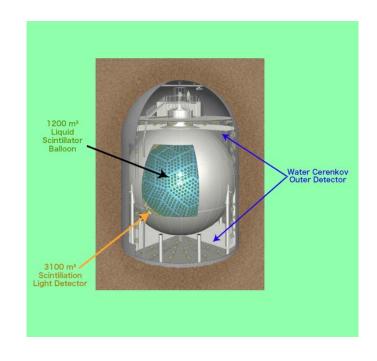

$$\sigma_N^{Z=F} \approx 4.2 \times \sigma_N^{Z=Ge}$$

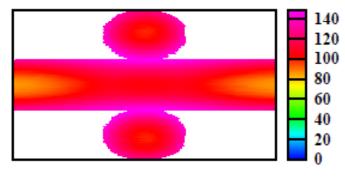
neutrino detectors

- more generally, though, we can see the upshot
- standard assumption of coherent scattering is constructive interference
 - bigger nucleus = bigger enhancement
- so IVDM can suppress signal... the question is how much
 - affects heavy nuclei (like xenon) the most
- let's take this DAMA/CoGeNT region, with f_n / f_p ~ -0.7
 - neutron-rich nuclei hurt
 - ideal detector would be made of hydrogen
- fortunately, we have such a detector available
 - the sun

dark matter annihilation in the sun

- basic assumptions
 - DM captured by the sun through elastic scattering
 - DM annihilates to SM matter
 - SM matter showers off neutrinos, which are seen at detector
 - DM in equilibrium $\rightarrow \Gamma_C = 2\Gamma_A$
 - so neutrino event rate probes DM capture rate (and $\sigma_{\rm SI}$, $\sigma_{\rm SD}$)
- at low mass, ~ 3-10% of $\Gamma_{\rm C}$ is from scattering off hydrogen (if $f_{\rm n} = f_{\rm p}$)
- best for IVDM....

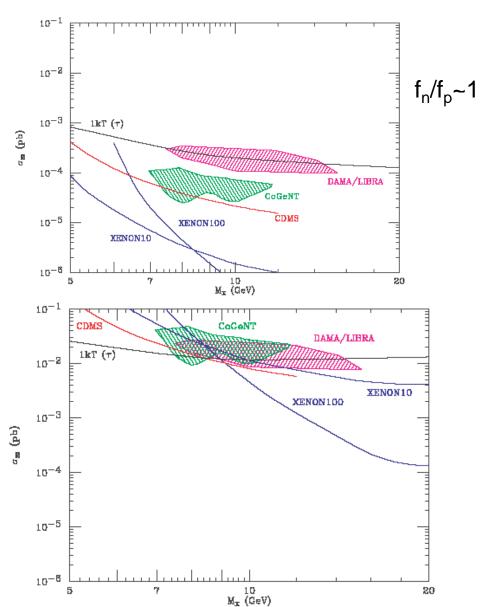



A. Zentner, arXiv:0907.3448

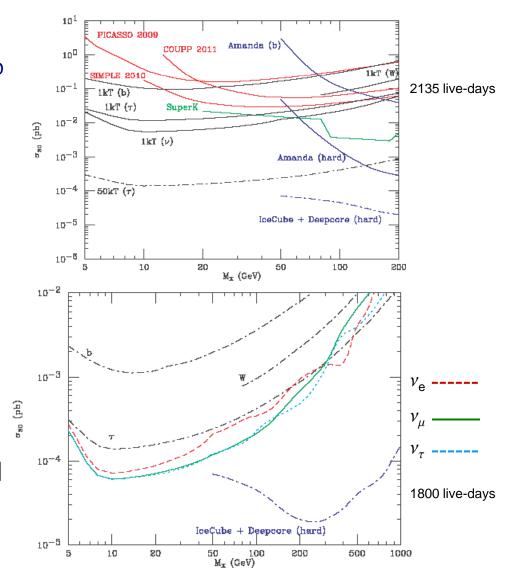
KamLAND

- 1 kT liquid scintillator detector
 - what we're looking at is the lepton produced from charged-current interaction
- LS detectors → good lepton direction measurement from timing of first photons
- use electron neutrinos
 - v_e produces an electron shower which is completely contained
 - much less atm. v_e background

J. Learned, arXiv:0902.4009



IVDM bounds


- KamLAND bound from 2135 live-days (E_{thr} = 1.5 GeV)
- atm. v_e bgd. ~ 5 events
 - 10 events for detection
- capture rate and neutrino spectrum → DarkSUSY
- IVDM
 - conservative estimate...
 scattering off hydrogen
 - same as SD capture rate
 - bounds from KamLAND become competitive
 - test Goodenough/Hooper model

$$f_n/f_p \sim -0.7$$

while we're at it... $\sigma_{\rm SD}$ bounds

- KamLAND can also bound $\sigma_{\mathtt{SD}}$
- for m_X < 20 GeV, KamLAND sensitivity competitive with direct detection and other experiments
- below 4 GeV, WIMP evaporation hurts sensitivity
- future detectors (LENA, HanoHano) can improve sensitivity by 2 orders of magnitude
 - competitive below 50 GeV
- with one year of running, could probe same low-mass

 Isospin Violating Dark Matter can potentially explain data from DAMA and CoGeNT, consistent with bounds from Xenon10/100

prediction for favored region for CRESST

ideal way to test this... neutrino experiments

KamLAND can probe the interesting IVDM region with data already taken

Mahalo!