The Higgs "Golden Channel" at 7 TeV

Roberto Vega-Morales

Northwestern University

PHENO 2011: May 10, 2011

Ongoing in collaboration with Jamie Gainer, Kunal Kumar and Ian Low

Overview

- Objective
- Review of the "Golden Channel"
- Statistical Analysis
- Detector Effects
- Results (preliminary)
- Conclusions/Future Work

Objective

- Use the matrix element method to extract the expected significance for the Higgs Boson signal as a function of Higgs mass (170 – 350 GeV) for a 7 TeV LHC
- Compare results obtained using the full angular information of the event with those using only the invariant mass (model independent)
- Compare matrix element analysis with a cut based analysis
- Set up our own chain of analysis in order to examine other signals and extract them from backgrounds

Golden Channel

Has been examined using the Matrix Element Method in earlier studies in the context of signal discrimination for 10 and 14 TeV

De Rujula, Lykken et al: arXiv:1001.5300, Gao, Gritsan, Melnikov et al: arXiv:1001.3396

- ▶ Golden Channel: $H \rightarrow ZZ \rightarrow 4I$
- \blacktriangleright Very "clean" channel due to high precision with which ${\it e}$ and μ are measured and is fully reconstructable
- Typically thought to be an "easy" mode of Higgs discovery...however...

Golden Channel

▶ Suffers from small cross sections due to branching fractions of $H \rightarrow ZZ \sim .3$ and Zs to leptons $\sim .0335$

A. Djouadi, J. Kalinowski, M. Spira hep-ph/9704448v1

Golden Channel: Background

- $q\bar{q} \rightarrow ZZ \rightarrow I^+I^-I^+I^-$ is the dominant irreducible background for 170 < mh < 350
- ▶ We include the 3 separate channels $ee\mu\mu$, 4μ and 4e at LO

Golden Channel: Signal

- ► The dominant production mechanism is $gg \rightarrow H \rightarrow ZZ \rightarrow I^+I^-I^+I^-$ through a top quark loop
- ▶ We consider the LO contribution only which is given by

Golden Channel: Observables

- In the $ee\mu\mu$ channel there is no ambiguity in defining the lepton angles since the final states are distinguishable
- ▶ For the 4μ and 4e channels we use the reconstructed Z masses to distinguish the pairs
- ▶ In the massless lepton approximation there are 12 observables per event (pT, η , Φ for each lepton)
- ► Using momentum conservation and the azimuthal symmetry of the detector we can reduce these to the set

$$x_i \equiv (x1, x2, M1, M2, \hat{s}, \Theta, \theta_1, \phi_1, \theta_2, \phi_2)$$

Golden Channel: Observables

The angle Θ is defined in the ZZ rest frame

Lykken et al: arXiv:1001.5300

▶ The angles θ_1 , ϕ_1 and θ_2 , ϕ_2 are defined in the rest frame of the Z which decays to electrons and muons respectively

Analysis: Test Statistic

- The Matrix Element Method: "What Jamie said..."
- We define our significance as

$$\mathcal{S} = \sqrt{2 In \mathcal{Q}}$$

where Q is the likelyhood ratio given by

$$Q = \frac{\mathcal{L}_{s+b}}{\mathcal{L}_b}$$

and

$$\mathcal{L}_{s+b} = e^{-\mathcal{N}_t} \mathcal{N}_t^N \prod_{i=0}^N [f_s \mathcal{P}_s(m_h, x_i) + (1 - f_s) \mathcal{P}_b(x_i)]$$

where \mathcal{P}_s and \mathcal{P}_b are the signal and background PDFs respectively

Analysis: Expected Significance

- ▶ To obtain the expected significance we construct the PDF for S by conducting a large number of psuedo experiments and obtaining S for each one
- ► To remove the dependance of S on the undetermined parameters we maximize the EML function prior to the construction of the likelihood ratio
- So we have for the likelihood ratio

$$Q = \frac{\mathcal{L}_{s+b}(\hat{N}t, \hat{f}s, \hat{m}h; x_i)}{\mathcal{L}_b(\hat{N}_t; x_i)}$$

where \hat{Nt} , \hat{fs} , \hat{mh} are the values which maximize the EML function for a given psuedo experiment

▶ Thus $\hat{N}t$, \hat{fs} , \hat{mh} are the most likely values for a given experiment

Detector Effects: pT dependence

- Cuts and detector smearing can shape distributions and introduce a pT dependence even when only considering the LO process
- ➤ To find the ZZ CM frame, must ensure pT is be properly boosted away on an event by event basis

Detector Effects: Cuts/Efficiencies

- We require: pT > 10 GeV, η < 2.5, and 150 < \hat{s} < 450
- ightharpoonup For the background we obtain an efficiency of $\sim 45\%$
- ▶ For the signal the efficiency depends on the Higgs mass $(\sim 55\% 78\%)$

Total Cross Section (Normalization)

- \blacktriangleright For the background we obtain, after efficiency cuts, a total background of \sim .003 pb
- For the signal we obtain the total cross section as function of Higgs mass before and after cuts

Signal to Background Ratio

The signal to background ratio will of course also depend on the Higgs mass

- ► Maximum value of .23 at ~ 200 GeV
- Not necessarily where expected significance is peaked

Results (preliminary)

Results (preliminary)

Conclusions

- ▶ For less than $7.5fb^{-1}$ we may have to get slightly lucky to obtain a 5σ discovery of a heavy Higgs in the Golden Channel at 7 TeV
- With a bit more luminosity, energy, or the addition of other channels a discovery should be possible
- ▶ At 10 fb^{-1} we find a mean expected significance of 5.28 σ for a 300 GeV Higgs

Ongoing and Future Work

- ► Finish analysis for 10fb⁻¹
- Compare significance obtained using only invariant mass as discriminating variable (model independent)
- Conduct a cut based analysis to compare with matrix element method
- Conduct analysis at 14 TeV
- Implement analysis for other resonances including CP odd/even spin 1 and 2