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Introduction to PONHEG

@ tools traditionally used at hadron colliders:

parton-level calculations (NLO) Shower Monte Carlo (SMC)
@ NLO accuracy: reduced scale dependence @ resummation of soft/collinear logarithms
@ good description of high-pr tails @ full simulation at the hadron level

= want more: NNLO = multileg matching: (CKKW/MLM)
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parton-level calculations (NLO) Shower Monte Carlo (SMC)
@ NLO accuracy: reduced scale dependence @ resummation of soft/collinear logarithms
@ good description of high-pr tails @ full simulation at the hadron level
= want more: NNLO = multileg matching: (CKKW/MLM)

@ need accurate predictions (signal & backgrounds) =- natural to combine the 2
approaches.

@ POWHEG Nason 2004] is @ method to achieve this goal consistently.
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@ Accuracy: inclusive observables @NLO, first hard emission with full tree level ME, (N)LL
resummation of collinear/soft logs, extra jets in the shower approximation.
@ alternative to MC@\LO, with some advantages:

@ events are positive weighted (where the acronym originates from).
9 ‘“independent” from the parton-shower algorithm used.



The PONHEG BOX framework

@ Although it may look easy, the actual implementation of the algorithm is not
straightforward. [Frixione,Nason,Oleari, JHEP 0711:070,2007]

@ Our automation of the algorithm led to the PONHEG BOX package, which has been
available for more than 1 year now.

@ General features:

@ automation of the PONHEG algorithm using the FKS subtraction scheme.
@ all previous implementations and new ones included in a single and public
framework:
V, H(gg fusion and VBF), QQ), single-top (s, t, Wt), ZZ,V + j, j5, WWjj,

9 it produces LHE files, ready to be showered through HERW Gor PYTHI A.
@ once needed ingredients are provided, it can be used as a “black-box”, although all
the details were carefully described.
[Alioli,Nason,Oleari,ER, JHEP 1006:043,2010]
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@ General features:
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@ all previous implementations and new ones included in a single and public
framework:
V, H(gg fusion and VBF), QQ, single-top (s, t, Wt), ZZ,V + j, jj, WWjj,

9 it produces LHE files, ready to be showered through HERW Gor PYTHI A.
@ once needed ingredients are provided, it can be used as a “black-box”, although all
the details were carefully described.
[Alioli,Nason,Oleari,ER, JHEP 1006:043,2010]

@ Other features:

9 we want to keep as much as possible the original goal of independence from the
parton-shower. If needed, will try to refine the interface.

9 until now effects of neglecting truncated-shower (when HERW Gis used) were found
to be negligible. If needed, this is a point where there is space for improvements.

@ we will continue keeping our code completely available for interested theorists, and if
you implement your process, we would be happy to include it in the repository.

http:// powhegbox. mb.infn.it


http://powhegbox.mib.infn.it

Jet pair production with PONHEG [1/2]

@ Dijet production is by far the most frequent hard scattering in hadronic collisions.

@ from the technical point of view, it is up to now the more complicated process
implemented in PONHEG.
This means also a serious test for the PONHEG BOX program.
@ Allingredients have been known since the late 80's: [Ellis, Sexton], [Kunszt, Soper]
9 2 — 2and 2 — 3 tree-level amplitudes
@ virtual corrections

@ color-linked amplitudes
9 2 — 2 amplitudes in the planar limit needed, to assign color structure
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@ from the technical point of view, it is up to now the more complicated process
implemented in PONHEG.
This means also a serious test for the PONHEG BOX program.
@ Allingredients have been known since the late 80's: [Ellis, Sexton], [Kunszt, Soper]
9 2 — 2and 2 — 3 tree-level amplitudes
@ virtual corrections
@ color-linked amplitudes
9 2 — 2 amplitudes in the planar limit needed, to assign color structure
@ checked NLO with Frixione-Ridolfi code + study of generation cut + weighted generation:
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Jet pair production with PONHEG [2/2]
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...in presence of symmetric cuts, nontrivial QCD effects:

LHC 7 TeV " Eyem = 40 GeV

——Egc = 100 GeV (x30) U(A), with ET,Q > ET,cut ET,l > ET,cut + A

T @ we expect o/ (A) = do/dA <0
3 @ NLO curve alone is “wrong”: peak and
suppression at low A
= unbalanced cancellation of
N soft-collinear emissions close to the cut.
<

[Frixione,Ridolfi], [Banfi,Dasgupta]

@ Resummation performed by the shower
e - : works well (here PONHEG first emission).
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Comparison with Tevatron and LHC data
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experimental cuts + direct comparison with data
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Studies by ATLAS and CMS

Program already used in ATLAS-CONF-2011-038,-047,-056,-057 CMS-PAS-FWD-10-003,-006
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Conclusions and outlook

@ Many 2 — 2 SM processes are available within the POANHEG BOX package.

@ Together with other POWHEG implementations (in HERW G++ and SHERPA) and with
MC@N\LOit is already possible to simulate almost all 2 — 2 SM processes with NLO+PS

accuracy.

@ 2 — 3 implementations are

possible.
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Conclusions and outlook

@ Many 2 — 2 SM processes are available within the POANHEG BOX package.

@ Together with other POWHEG implementations (in HERW G++ and SHERPA) and with
MC@N\LOit is already possible to simulate almost all 2 — 2 SM processes with NLO+PS

accuracy.

@ 2 — 3 implementations are work in progress, and a 2 — 4 implementation was already

possible.
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Conclusions and outlook

@ Many 2 — 2 SM processes are available within the POANHEG BOX package.

@ Together with other POWHEG implementations (in HERW G++ and SHERPA) and with
MC@N\LOit is already possible to simulate almost all 2 — 2 SM processes with NLO+PS
accuracy.

@ 2 — 3 implementations are , and a 2 — 4 implementation was already
possible.

@ Understand the origin of the disagreement with ATLAS dijets data is
@ In general, the validation of the code will be demanding for more complicated processes:

= code running properly # implementation fully understood
= this could be especially relevant for processes with multijets

Outlooks:

@ Many interesting processes yet to be implemented (V+multijets, heavy flavours with jets,
exact mass effects in Higgs gluon fusion, BSM).
= use them to do some phenomenology
= allow experimentalists to have accurate tools

@ Interfacing to modern codes for virtual corrections.

@ Further studies and improvements are possible, for example MENLOPS

[Hamilton,Nason], [SHERPA]

= include multileg accuracy to a NLO+PS simulation.
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