Jet pair production with POWHEG

Emanuele Re*

IPPP, Durham University

Pheno 2011

University of Wisconsin, Madison, 9 May 2011

^{*}in collaboration with S. Alioli, K. Hamilton, P. Nason and C. Oleari

- Introduction
- Jet pair production in POWHEG
- Results and comparison with data
- Recent developments and outlook

Introduction to POWHEG

tools traditionally used at hadron colliders:
 parton-level calculations (NLO)

NLO accuracy: reduced scale dependence

 \bullet good description of high- p_{T} tails

⇒ want more: NNLO

Shower Monte Carlo (SMC)

- resummation of soft/collinear logarithms
- full simulation at the hadron level
- ⇒ multileg matching: (CKKW/MLM)

Introduction to POWHEG

tools traditionally used at hadron colliders:

parton-level calculations (NLO)

- NLO accuracy: reduced scale dependence
- ullet good description of high- p_{T} tails
- ⇒ want more: NNLO

Shower Monte Carlo (SMC)

- resummation of soft/collinear logarithms
- full simulation at the hadron level
- ⇒ multileg matching: (CKKW/MLM)
- need accurate predictions (signal & backgrounds) ⇒ natural to combine the 2 approaches.
- POWHEG [Nason 2004] is a method to achieve this goal consistently.

$$d\sigma_{\rm POW} = \bar{B}(\Phi_n) \ d\Phi_n \left\{ \Delta(\Phi_n; k_{\rm T}^{\rm min}) + \Delta(\Phi_n; k_{\rm T}) \frac{R(\Phi_n, \Phi_r)}{B(\Phi_n)} d\Phi_r \right\}$$

$$\begin{split} \bar{B}(\Phi_n) &= B(\Phi_n) + V(\Phi_n) + \int R(\Phi_{n+1}) \ d\Phi_r \\ \Delta(\Phi_n; k_{\mathrm{T}}) &= \exp\left\{-\int_{k_{\mathrm{T}}} \frac{R(\Phi_n, \Phi_r')}{B(\Phi_n)} \ d\Phi_r'\right\} \end{split}$$

and to avoid double-counting the subsequent emissions are p_T -vetoed.

Introduction to POWHEG

tools traditionally used at hadron colliders:

parton-level calculations (NLO)

- NLO accuracy: reduced scale dependence
- $\ \, \textbf{good description of high-} p_{\mathrm{T}} \ \textbf{tails} \\$
- ⇒ want more: NNLO

Shower Monte Carlo (SMC)

- resummation of soft/collinear logarithms
- full simulation at the hadron level
- ⇒ multileg matching: (CKKW/MLM)
- need accurate predictions (signal & backgrounds) ⇒ natural to combine the 2 approaches.
- POWHEG [Nason 2004] is a method to achieve this goal consistently.

$$d\sigma_{\text{POW}} = \bar{B}(\Phi_n) \ d\Phi_n \left\{ \Delta(\Phi_n; k_{\text{T}}^{\text{min}}) + \Delta(\Phi_n; k_{\text{T}}) \frac{R(\Phi_n, \Phi_r)}{B(\Phi_n)} d\Phi_r \right\}$$

- Accuracy: inclusive observables @NLO, first hard emission with full tree level ME, (N)LL
 resummation of collinear/soft logs, extra jets in the shower approximation.
- alternative to MC@NLO, with some advantages:
 - events are positive weighted (where the acronym originates from).
 - "independent" from the parton-shower algorithm used.

The POWHEG BOX framework

- Although it may look easy, the actual implementation of the algorithm is not straightforward. [Frixione,Nason,Oleari, JHEP 0711:070,2007]
- Our automation of the algorithm led to the POWHEG BOX package, which has been available for more than 1 year now.
- General features:
 - automation of the POWHEG algorithm using the FKS subtraction scheme.
 - all previous implementations and new ones included in a single and public framework:

```
V, H(gg \text{ fusion and VBF}), Q\bar{Q}, \text{single-top } (s,t,Wt), ZZ, V+j, jj, WWjj, \textcolor{red}{Wb\bar{b}}, Q\bar{Q}j \\
```

- it produces LHE files, ready to be showered through HERWIG or PYTHIA.
- once needed ingredients are provided, it can be used as a "black-box", although all the details were carefully described.

[Alioli,Nason,Oleari,ER, JHEP 1006:043,2010]

The POWHEG BOX framework

- Although it may look easy, the actual implementation of the algorithm is not straightforward. [Frixione,Nason,Oleari, JHEP 0711:070,2007]
- Our automation of the algorithm led to the POWHEG BOX package, which has been available for more than 1 year now.
- General features:
 - automation of the POWHEG algorithm using the FKS subtraction scheme.
 - all previous implementations and new ones included in a single and public framework:

```
V, H(gg 	ext{ fusion and VBF}), Qar{Q}, 	ext{single-top } (s,t,Wt), ZZ, V+j, jj, WWjj, Wbar{b}, Qar{Q}j
```

- it produces LHE files, ready to be showered through HERWIG or PYTHIA.
- once needed ingredients are provided, it can be used as a "black-box", although all the details were carefully described.

[Alioli,Nason,Oleari,ER, JHEP 1006:043,2010]

Other features:

- we want to keep as much as possible the original goal of independence from the parton-shower. If needed, will try to refine the interface.
- until now effects of neglecting truncated-shower (when HERWIG is used) were found to be negligible. If needed, this is a point where there is space for improvements.
- we will continue keeping our code completely available for interested theorists, and if you implement your process, we would be happy to include it in the repository.

- Dijet production is by far the most frequent hard scattering in hadronic collisions.
- from the technical point of view, it is up to now the more complicated process implemented in POWHEG.

This means also a serious test for the POWHEG BOX program.

All ingredients have been known since the late 80's:

[Ellis, Sexton], [Kunszt, Soper]

- ullet $2 \rightarrow 2$ and $2 \rightarrow 3$ tree-level amplitudes
- virtual corrections
- color-linked amplitudes
- \bullet 2 \rightarrow 2 amplitudes in the planar limit needed, to assign color structure

- Dijet production is by far the most frequent hard scattering in hadronic collisions.
- from the technical point of view, it is up to now the more complicated process implemented in POWHEG.

This means also a serious test for the POWHEG BOX program.

All ingredients have been known since the late 80's:

[Ellis, Sexton], [Kunszt, Soper]

- $\bullet \ 2 \rightarrow 2$ and $2 \rightarrow 3$ tree-level amplitudes
- virtual corrections
- color-linked amplitudes
- $\bullet \ 2 \rightarrow 2$ amplitudes in the planar limit needed, to assign color structure
- checked NLO with Frixione-Ridolfi code + study of generation cut + weighted generation:

 \Rightarrow D0 midpoint, R=0.7, f=0.5

 \Rightarrow weighted generation using $\left(\frac{k_T^2}{k_T^2 + k_{T,S}^2}\right)^3$

- ← POWHEG = first emission (colored line)
 - lacktriangle inclusive k_{T} spectrum
 - expected agreement between NLO and POWHEG but ...

← POWHEG = first emission (colored line)

- ullet inclusive k_{T} spectrum
- expected agreement between NLO and POWHEG but ...

...in presence of symmetric cuts, nontrivial QCD effects:

$$\sigma(\Delta)$$
, with $E_{T,2} > E_{T,cut}$ $E_{T,1} > E_{T,cut} + \Delta$

- we expect $\sigma'(\Delta) = d\sigma/d\Delta < 0$
- NLO curve alone is "wrong": peak and suppression at low ∆
 ⇒ unbalanced cancellation of soft-collinear emissions close to the cut. [Frixione,Ridolfi], [Banfi,Dasgupta]
- Resummation performed by the shower works well (here POWHEG first emission).

← POWHEG = first emission (colored line)

- ullet inclusive k_{T} spectrum
- expected agreement between NLO and POWHEG but ...

...in presence of symmetric cuts, nontrivial QCD effects:

 $\Leftarrow |y| = \max(|y_1|, |y_2|)$

- dijet mass
- for $E_{T,cut} = 40$ GeV:

$$y \sim 1.8 \Rightarrow m_{jj} \sim 250 \text{ GeV}$$

 $y \sim 1.4 \Rightarrow m_{jj} \sim 170 \text{ GeV}$

Comparison with Tevatron and LHC data

experimental cuts + direct comparison with data

Studies by ATLAS and CMS

Program already used in ATLAS-CONF-2011-038,-047,-056,-057 CMS-PAS-FWD-10-003,-006

- dijet invariant mass, R = 0.4
- cuts: $p_T^{j1} > 30$ GeV, $p_T^{j2} > 20$ GeV, $|y^j| < 4.4$
- observed disagreement, especially when R=0.6

- $\qquad \text{outs: } p_T^j > 20 \text{ GeV, } |y^j| < 4.5$
- gap region = 2 highest-y jets, with $\bar{p}_T >$ 50 GeV
- lacklose gap events = no jets harder than Q_0 within the gap (here $Q_0=\bar{p}_T$)

- \bullet Many $2 \to 2$ SM processes are available within the POWHEG $\,$ BOX package.
- Together with other POWHEG implementations (in HERWIG++ and SHERPA) and with MC@NLO it is already possible to simulate almost all $2 \rightarrow 2$ SM processes with NLO+PS accuracy.
- $\bullet \ 2 \to 3$ implementations are work in progress, and a $2 \to 4$ implementation was already possible.

- \bullet Many $2 \to 2$ SM processes are available within the POWHEG $\,$ BOX package.
- Together with other POWHEG implementations (in HERWIG++ and SHERPA) and with MC@NLO it is already possible to simulate almost all $2 \to 2$ SM processes with NLO+PS accuracy.
- $\bullet \ 2 \to 3$ implementations are work in progress, and a $2 \to 4$ implementation was already possible.

 W^+W^+jj [Melia,Nason,Rontsch,Zanderighi, arXiv:1102.4846]

- lacktriangle Many $2 \to 2$ SM processes are available within the POWHEG BOX package.
- Together with other POWHEG implementations (in HERWIG++ and SHERPA) and with MC@NLO it is already possible to simulate almost all $2 \to 2$ SM processes with NLO+PS accuracy.
- $2 \to 3$ implementations are work in progress, and a $2 \to 4$ implementation was already possible.

- \bullet Many $2 \to 2$ SM processes are available within the POWHEG $\,$ BOX package.
- Together with other POWHEG implementations (in HERWIG++ and SHERPA) and with MC@NLO it is already possible to simulate almost all $2 \rightarrow 2$ SM processes with NLO+PS accuracy.
- $\bullet \ 2 \to 3$ implementations are work in progress, and a $2 \to 4$ implementation was already possible.

[Kardos, Papadopoulos, Trocsanyi, arXiv:1101.2672]
[Alioli.Moch,Uwer, PRELIMINARY]

- lacktriangle Many 2 o 2 SM processes are available within the POWHEG BOX package.
- Together with other POWHEG implementations (in HERWIG++ and SHERPA) and with MC@NLO it is already possible to simulate almost all $2 \rightarrow 2$ SM processes with NLO+PS accuracy.
- $2 \to 3$ implementations are work in progress, and a $2 \to 4$ implementation was already possible.
- Understand the origin of the disagreement with ATLAS dijets data is work in progress.
- In general, the validation of the code will be demanding for more complicated processes:
 - ⇒ code running properly ≠ implementation fully understood
 - \Rightarrow this could be especially relevant for processes with multijets

Outlooks:

- Many interesting processes yet to be implemented (V+multijets, heavy flavours with jets, exact mass effects in Higgs gluon fusion, BSM).
 - ⇒ use them to do some phenomenology
 - ⇒ allow experimentalists to have accurate tools
- Interfacing to modern codes for virtual corrections.
- Further studies and improvements are possible, for example MENLOPS

 $[Hamilton, Nason], [{\tt SHERPA}]$

⇒ include multileg accuracy to a NLO+PS simulation.

- lacktriangle Many 2 o 2 SM processes are available within the POWHEG BOX package.
- Together with other POWHEG implementations (in HERWIG++ and SHERPA) and with MC@NLO it is already possible to simulate almost all $2 \rightarrow 2$ SM processes with NLO+PS accuracy.
- $2 \to 3$ implementations are work in progress, and a $2 \to 4$ implementation was already possible.
- Understand the origin of the disagreement with ATLAS dijets data is work in progress.
- In general, the validation of the code will be demanding for more complicated processes:
 - ⇒ code running properly ≠ implementation fully understood
 - \Rightarrow this could be especially relevant for processes with multijets

Outlooks:

- Many interesting processes yet to be implemented (V+multijets, heavy flavours with jets, exact mass effects in Higgs gluon fusion, BSM).
 - ⇒ use them to do some phenomenology
 - ⇒ allow experimentalists to have accurate tools
- Interfacing to modern codes for virtual corrections.
- Further studies and improvements are possible, for example MENLOPS

 $[Hamilton, Nason], [{\tt SHERPA}]$

⇒ include multileg accuracy to a NLO+PS simulation.