Many Leptons at the LHC from the NMSSM

Brian Yencho

University of Wisconsin - Madison Collaborators: Vernon Barger Gabe Shaughnessy

Phenomenology Symposium May 2011

The μ problem

The MSSM superpotential is given by

$$W_{\rm MSSM} = {}_{\boldsymbol{\mu}}\hat{H}_{\boldsymbol{u}}\hat{H}_{\boldsymbol{d}} + \hat{\boldsymbol{u}}\boldsymbol{y}_{\boldsymbol{u}}\hat{\boldsymbol{Q}}\hat{H}_{\boldsymbol{u}} - \hat{\boldsymbol{d}}\boldsymbol{y}_{\boldsymbol{d}}\hat{\boldsymbol{Q}}\hat{H}_{\boldsymbol{d}} - \hat{\boldsymbol{e}}\boldsymbol{y}_{\boldsymbol{e}}\hat{\boldsymbol{L}}\hat{H}_{\boldsymbol{d}},$$

This provides part of the MSSM Higgs potential

$$V = V_F + V_D + V_{\text{soft}}$$

where

$$V_F = |\mu|^2 (|H_d|^2 + |H_u|^2)$$

$$V_D = \frac{g_1^2 + g_2^2}{8} (|H_d|^2 - |H_u|^2)^2 + \frac{g_2^2}{2} (|H_d|^2 |H_u|^2 - |H_u \cdot H_d|^2)$$

$$V_{\text{soft}} = m_d^2 |H_d|^2 + m_u^2 |H_u|^2 + (BH_u \cdot H_d + \text{h.c.})$$

Minimizing this potential gives the two Higgs VEVs

$$\langle \hat{H}_{u}^{0} \rangle = \frac{v_{u}}{\sqrt{2}}$$

 $\langle \hat{H}_{d}^{0} \rangle = \frac{v_{d}}{\sqrt{2}}$

where

$$v_{\rm SM} = \sqrt{v_u^2 + v_d^2} \approx 246 \text{ GeV}$$

Note that

 $\mu \rightarrow \text{supersymmetry conserving}$ $m_{\mu}^2, m_{e}^2, B \rightarrow \text{supersymmetry breaking } (O(\text{TeV}))$

- Naturalness problem: μ must be O(TeV) to avoid fine-tuning.
- This is the μ problem.

NMSSM

- One possible solution is to generate the μ term dynamically.
- Relate μ to the VEV of a new field:

$$\lambda \hat{S} \hat{H}_u \cdot \hat{H}_d \rightarrow \lambda \langle S \rangle \hat{H}_u \cdot \hat{H}_d = \mu_{\text{eff}} \hat{H}_u \cdot \hat{H}_d$$

- Here \hat{S} is a gauge-singlet, chiral superfield and λ is a dimensionless $\mathcal{O}(1)$ parameter.
- Next-to-Minimal Supersymmetric Standard Model (NMSSM) is characterized by the superpotential

$$W_{\text{NMSSM}} = W_{\text{MSSM}}|_{\mu \to 0} + \lambda \hat{S} \hat{H}_u \cdot \hat{H}_d + \frac{1}{3} \kappa \hat{S}^3$$

- κ is a dimensionless O(1) parameter
- The κ term forbids a global $U(1)_{PQ}$ symmetry (but leaves a discrete Z_3)

- The chiral superfield Ŝ contains both a complex scalar boson state and a fermion state.
- These mix with the other neutral states, providing two new Higgs bosons and one additional neutralino

	MSSM	NMSSM
CP-Even Higgs H _i	<i>H</i> ₁	H ₁
	H_2	H_2
		H_3
CP-Odd Higgs A _i	A ₁	A ₁
		A_2
Neutralinos χ_i^0	$\chi_1^0 - \chi_4^0$	χ_1^0 - χ_4^0
		χ_5^0

- The chiral superfield Ŝ contains both a complex scalar boson state and a fermion state.
- These mix with the other neutral states, providing two new Higgs bosons and one additional neutralino

	MSSM	NMSSM
CP-Even Higgs H _i	<i>H</i> ₁	H ₁
	H_2	H_2
		H_3
CP-Odd Higgs Ai	A ₁	A ₁
		A_2
Neutralinos χ_i^0	$\chi_1^0 - \chi_4^0$	$\chi_1^0 - \chi_4^0$
		χ_5^0

How do these new states affect the collider phenomenology?

• In the MSSM, one possible source of a multi-lepton signal is

Important if squarks and gluinos are heavy

In the MSSM, one possible source of a multi-lepton signal is

- Important if squarks and gluinos are heavy
- How does this change for the NMSSM?

In the MSSM, one possible source of a multi-lepton signal is

- Important if squarks and gluinos are heavy
- How does this change for the NMSSM?
- What if mixing is small and $\chi_1^0 \sim \tilde{S}$ is light?

• For example, an extended decay in the NMSSM could be

We will actually be looking at the following decay

- This would give a signal with 7 leptons and 0 jets!
- What would make this have a large cross section?
 - * Large $W^{\pm}\chi^{\mp}\chi^{0}_{3}$ coupling
 - * Large BR($\chi_i^0 \rightarrow \tilde{l}_{LR}^{\pm} l^{\pm}$)
 - * Large BR($\tilde{I}_{L}^{\pm} \rightarrow I^{\pm} \chi_{2}^{0}$)

- Large $W^{\pm}\chi^{\mp}\chi^0_3$ coupling:
 - $^*~W^\pm$ boson couples to $ilde{W}^3$ and $ilde{H_d}, ilde{H_u}$
 - * Therefore, maximize the Wino and Higgsino components of χ_3^0
- Large BR($\chi_i^0 o \tilde{\it I}_{L,R}^\pm \it I^\pm$)
 - * Usually the case when this decay mode is available on-shell
 - * Therefore, require $M_{\chi_3^0}, M_{\chi_1^\pm} > M_{l_L^\pm} > M_{\chi_2^0} > M_{l_R^\pm} > M_{\chi_1^0}$
- Large BR($\tilde{\it I}_{\it L}^{\pm}
 ightarrow {\it I}^{\pm}\chi_{2}^{0}$)
 - * Under most circumstances the decay to χ_1^0 is larger
 - * BUT, that branching ratio is suppressed if $\chi_1^0 \sim \tilde{S}$
 - Therefore, maximize the Singlino component of χ_1^0

Can we actually do this?

- All the mixing parameters will be determined by the neutralino and chargino mass matrices
- In the basis $(\tilde{B}, \tilde{W}^3, \tilde{H}_d^0, \tilde{H}_u^0, \tilde{S})$

$$\mathbf{M}_{\chi^0} = \left(\begin{array}{cccc} M_1 & 0 & -g_1 v_d/2 & g_1 v_u/2 & 0 \\ 0 & M_2 & g_2 v_d/2 & -g_2 v_u/2 & 0 \\ -g_1 v_d/2 & g_2 v_d/2 & 0 & -\mu_{\mathrm{eff}} & -\mu_{\mathrm{eff}} v_u/s \\ g_1 v_u/2 & -g_2 v_u/2 & -\mu_{\mathrm{eff}} & 0 & -\mu_{\mathrm{eff}} v_d/s \\ 0 & 0 & -\mu_{\mathrm{eff}} v_u/s & -\mu_{\mathrm{eff}} v_d/s & \sqrt{2}\kappa s \end{array} \right)$$

• 1

*
$$s \gg v_u, v_d$$

* $\sqrt{2}\kappa s < \max[M_1, M_2, \mu_{\text{eff}}]$
then $\gamma_0^4 \approx \tilde{S}$

- If the above conditions are met and
 - * $M_1 < M_2$, $\mu_{\rm eff}$ then χ_3^0 may have large \tilde{W} and \tilde{H}_d^0 , \tilde{H}_u^0 components

Parameter Scan

- Now we need to find a benchmark that satisfies:
 - * our requirements for large cross section and
 - * all relevant experimental constraints
- To calculate cross sections we
 - * Implement the NMSSM in MadGraph: Calculate $pp o W^{*\pm} o \chi_1^\pm \chi_3^0$
 - * Use BRIDGE to calculate all branching fractions
 - * Calculate total branching fractions to multi-lepton final states
- To verify experimental constraints we NMSSMtools:
 - * This program calculates the predicted relic density and compares it to observed value $0.094 < \Omega h^2 < 0.136$ (we only take upper bound).
 - * It also checks collider constraints such as LEP mass limit and limits from $(g-2)_\mu$ and ${\sf BR}(b\to s\gamma)$

• The NMSSM-specific parameters are:

$$s, \kappa, A_{\kappa}, A_{s}$$

and the parameters shared with the MSSM are

$$\mu_{\rm eff}$$
, $\tan \beta$, A_t , A_b , A_{τ} , M_1 , M_2 , M_3 , M_{Q_i} , M_{U_i} , M_{D_i} , M_{L_i} , M_{E_i}

- We can simplify things by making a few assumptions:
 - Gaugino Mass Unification:

$$M_1 = \frac{1}{2}M_2 = \frac{1}{6}M_3$$

* Family-Universal Sfermion Mass Parameters:

$$M_{L_1} = M_{L_2} = M_{L_3} = M_L$$
 etc.

* Heavy Squarks:

$$M_Q = M_U = M_D = 2 \text{ TeV}$$

* Light sleptons:

$$M_I, M_F \lesssim 200 \text{ GeV}$$

$$pp \rightarrow W^+ \rightarrow \chi_3^0 \chi_1^+ \rightarrow 5 \text{ leptons} + 0 \text{ jets}$$

Event Generation and Detector Simulation

- To simulate LHC detection we
 - Generate signal events with MadGraph + BRIDGE (decaying to all final states)
 - * Generate background events with ALPGEN
- These events are then subject to energy smearing as

$$\frac{\Delta E}{E} = \begin{cases} \frac{0.5}{\sqrt{E/\text{GeV}}} \oplus 0.03 \text{ for jets} \\ \frac{0.1}{\sqrt{E/\text{GeV}}} \oplus 0.007 \text{ for leptons} \end{cases}$$

and the following p_T , η , and $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$ cuts:

$$p_{T} > \begin{cases} 20 \text{ GeV for the hardest two leptons } (e,\mu) \\ 7 \text{ GeV for all other light leptons} \\ 15 \text{ GeV for } \tau \text{ leptons} \\ 20 \text{ GeV for jets} \end{cases}$$

$$|\eta| < \left\{ \begin{array}{l} 2.4 \text{ for electrons} \\ 2.1 \text{ for muons} \\ 2.5 \text{ for } \tau\text{-leptons and jets} \end{array} \right.$$

$$\Delta R > \begin{cases} 0.2 \text{ for light leptons} \\ 0.4 \text{ for all others} \end{cases}$$

- We also include
 - basic tagging efficiencies
 - * isolated leptons from heavy quark decay ($P \sim 1/200$)
 - * a jet veto

Background Cross Sections (fb) N leptons												
	WZ	ZZ	WWW	WWZ	WZZ	ZZZ	Wtī	Zcē	Zbb	Ztī	tīt	TOTAL
$\sqrt{s} = 7 \text{ TeV}$												
3/	70	7.2	0.22	0.26	0.13	0.012	1.3	5.5	5.3	1.2	7.4	99
w/ jet veto	70	7.0	0.22	0.07	0.045	0.002	0.007	-	-	0.005	1.8	80
41	-	7.2	-	0.07	0.005	0.020	0.003	-	-	0.12	-	7.4
w/ jet veto	-	7.2	-	0.06	0.003	0.003	-	-	-	0.002	-	7.3
5/	-	-	-	-	-	-	-	-	-	0.002	-	0.002
w/ jet veto	-	-	-	-	-	-	-	-	-	-	-	-
$\sqrt{s} = 14 \text{ TeV}$												
3/	140	18	0.54	1.5	0.33	0.04	3.6	19	7.5	7.7	36	240
w/ jet veto	140	17	0.54	0.12	0.087	0.01	0.04	1.5	-	0.02	3.9	170
41	-	19	-	0.12	0.027	0.01	0.01	-	-	0.84	-	20
w/ jet veto	-	19	-	0.12	0.027	0.01	-	-	_	0.013	-	19
5/	-	_	-	-	0.003	_	-	-	_	0.005	-	0.008
w/ jet veto	-	_	-	-	0.003	_	-	-	_	0.003	-	0.006

Signal Cross Sections (fb) N leptons + 0 jets						
\sqrt{s}	3/	41	5/	6/	71	
7 TeV	25.6	4.91	2.31	0.09	0.03	
14 TeV	68.7	13.3	6.09	0.29	0.06	

	NMSSM Signal
\geq	N leptons + 0 jets

	≥ 3 /		≥ 5 /	
	Signal	Background	Signal	Background
$\sqrt{s} = 7 \text{ TeV}$				
Cross section (fb)	33	87	2.4	~ 0.0
Luminosity for 3σ (fb ⁻¹)		1.0		3.7
Luminosity for 5σ (fb ⁻¹)		2.8		10
$\sqrt{s} = 14 \text{ TeV}$				
Cross section (fb)	88.4	187	6.44	0.006
$N_{\rm events}$ (600 fb ⁻¹)	5.3×10^4	1.1×10^{5}	3.9×10^{3}	4
Luminosity for 3σ (fb ⁻¹)		0.32		1.4
Luminosity for 5σ (fb ⁻¹)		0.88		3.9

This signal could be discovered with

- * $\sim 3 \text{ fb}^{-1}$ of data at $\sqrt{s} = 7 \text{ TeV}$
- * < 1 fb⁻¹ of data at \sqrt{s} = 14 TeV

	NMSSM	Sign	al
\geq	N lepton	s + 0	jets

		≥ 3 /	≥ 5 <i>I</i>		
	Signal	Background	Signal	Background	
$\sqrt{s} = 7 \text{ TeV}$					
Cross section (fb)	33	87	2.4	\sim 0.0	
Luminosity for 3σ (fb ⁻¹)		1.0		3.7	
Luminosity for 5σ (fb ⁻¹)		2.8		10	
$\sqrt{s} = 14 \text{ TeV}$					
Cross section (fb)	88.4	187	6.44	0.006	
$N_{\rm events}$ (600 fb ⁻¹)	5.3×10^{4}	1.1×10^{5}	3.9×10^{3}	4	
Luminosity for 3σ (fb ⁻¹)		0.32		1.4	
Luminosity for 5σ (fb ⁻¹)		0.88		3.9	

This signal could be discovered with

- * $\sim 3 \text{ fb}^{-1}$ of data at $\sqrt{s} = 7 \text{ TeV}$
- * $< 1 \text{ fb}^{-1}$ of data at $\sqrt{s} = 14 \text{ TeV}$
- Can also use kinematic edges to estimate mass differences

Process	Δm (GeV)	M_{max} (GeV)	Distribution
$\chi_3^0 o \chi_2^0$	62.4	59.3	2L-OS-SF
$\chi_3^0 \to \chi_1^0$	82.5	82.5	4L
$\chi_3^0 o ilde{\it l}_R^\pm$	72.6	72.4	3L
$ ilde{ ilde{I}_{L}^{\pm}} ightarrow ilde{ ilde{I}_{R}^{\pm}}$	28.9	28.0	2L
$ ilde{\it I}_L^\pm ightarrow \chi_1^0$	38.8	38.8	3L
$\chi_2^0 o \chi_1^0$	20.1	20.1	2L-OS-SF

 \geq 5 leptons + 0 jets, 600 fb⁻¹

Conclusions

- The NMSSM can have large cross sections for signals with \geq 3 leptons + 0 jets and \geq 5 leptons + 0 jets.
- Our benchmark point could be detected at the LHC with
 - * \sim 3 fb⁻¹ of data at \sqrt{s} = 7 TeV * < 1 fb⁻¹ of data at \sqrt{s} = 14 TeV
- With large amounts of accumulated data, kinematic mass edges are clearly visible and can be used to determine a variety of mass differences.

Conclusions

- The NMSSM can have large cross sections for signals with \geq 3 leptons + 0 jets and \geq 5 leptons + 0 jets.
- Our benchmark point could be detected at the LHC with
 - * \sim 3 fb⁻¹ of data at \sqrt{s} = 7 TeV * < 1 fb⁻¹ of data at \sqrt{s} = 14 TeV
- With large amounts of accumulated data, kinematic mass edges are clearly visible and can be used to determine a variety of mass differences.

THANK YOU!

EXTRA SLIDES

• Our benchmark point is defined by the following parameters:

	NMSSM Benchmark Model Parameters							
tan β	h _s	As	μ	к	A_{κ}	A_t	A _b	A_{τ}
7.55	0.056	488	199	0.015	-39.6	-1170	1886	-143
$\overline{M_1}$	<i>M</i> ₂	<i>M</i> ₃	M_Q	Mυ	M_D	M_L	ME	
149	297	891	2000	2000	2000	140	110	

Sparticle Mass Spectrum (GeV)						
χ_1^0 :	109	$ ilde{\it I}_{\it L}^{\pm}$:	147			
χ_2^0 :	129	$ ilde{\it I}_{R}^{\pm}$:	118			
χ_3^0 :	191	$ ilde{ au}_{1}^{\pm}$:	114			
χ_4^0 :	206	$ ilde{ au}_{ extsf{2}}^{\pm}$:	150			
χ_5^0 :	333	$ ilde{ u}_I$:	125			
χ_1^\pm :	173	$\tilde{\nu}_{\tau}$:	125			
χ_2^\pm :	333					

Neutralino Composition							
	Ã	Ŵ	\tilde{H}_{u}	$ ilde{ extit{H}}_{ extit{d}}$	Š		
χ_1^0 :	0.02	< 0.01	0.01	0.01	0.95		
χ_2^0 :	0.64	0.03	0.20	0.09	0.04		
χ_3^0 :	0.33	0.17	0.26	0.24	< 0.01		
χ_4^0 :	0.01	0.01	0.47	0.51	< 0.01		
χ_5^0 :	0.01	0.79	0.06	0.14	< 0.01		

Dominant Leptonic Branching Fractions		
$\chi_3^0 ightarrow$	$I^{\pm}\widetilde{I}_{ m R}^{\mp}$	0.40
	$I^{\pm}\widetilde{I}_{ m L}^{\mp}$	0.12
	$v_I \tilde{v}_I$	0.01
$\chi_1^\pm o$	$I^{\pm} \widetilde{\mathfrak{V}}_I$	0.53
	$ u_I ilde{I}_{ m L}^\pm$	0.08
$ ilde{\it I}_L^\pm ightarrow$	$I^{\pm}\chi_2^0$	0.97
	$I^\pm\chi_1^0$	0.03
$\chi_2^0 ightarrow$	$I^{\pm}\widetilde{I}_{R}^{\mp}$	0.48
	$v_I \tilde{v}_I$	0.04
$\tilde{\nu}_I \rightarrow$	$v_1\chi_1^0$	1.00
$ ilde{\it I}_{R}^{\pm} ightarrow$	$I^{\pm}\chi_1^0$	1.00

Kinematic Edges

• Consider the decay $I \rightarrow f_1 f_2 ... f_n F$

where

- * I, F are massive particles
- * fi are n massless final-state fermions
- The total mass of the system can be related to invariant mass of the n
 fermions

$$m_I^2 = (p_1 + p_2 + ... + p_n + p_F)^2$$

 $m_I^2 = m^2(f_1...f_n) + 2p_I \cdot p_F - m_F^2$

In the rest-frame of I this gives

$$m^2(f_1...f_n) = m_I^2 + m_F^2 - 2m_I E_F$$

 $m^2(f_1...f_n) \le (m_I - m_F)^2$

with the maximum reached when F is at rest in the rest-frame of I.

- This shows up as an edge in an invariant mass plot
- However, it is not always possible to reach this kinematic limit.

2 fermions

• For the process $A \rightarrow bB \rightarrow bcC$

the kinematic upper limit will be given by

$$M_{max}^2(bc) = rac{(m_A^2 - m_B^2)(m_B^2 - m_C^2)}{m_B^2}$$

(This will occur when particles b and c are emitted back-to-back)

3 fermions

• For the process $A \rightarrow bB \rightarrow bcC \rightarrow bcdD$

the kinematic upper limit will be given by

$$M_{\max}^{2}(\textit{bcd}) = \begin{cases} \frac{(m_{A}^{2} - m_{B}^{2})(m_{B}^{2} - m_{D}^{2})}{m_{B}^{2}} & \text{iff} & \frac{m_{A}}{m_{D}} > \frac{m_{B}^{2}}{m_{D}^{2}} \\ \frac{(m_{A}^{2} m_{C}^{2} - m_{B}^{2} m_{D}^{2})(m_{B}^{2} - m_{C}^{2})}{m_{B}^{2} m_{C}^{2}} & \text{iff} & \frac{m_{A}}{m_{D}} < \frac{m_{B}^{2}}{m_{C}^{2}} \\ \frac{(m_{A}^{2} - m_{C}^{2})(m_{C}^{2} - m_{D}^{2})}{m_{C}^{2}} & \text{iff} & \frac{m_{A}}{m_{D}} < \frac{m_{C}^{2}}{m_{D}^{2}} \end{cases}$$

$$(m_{A} - m_{D})^{2} \quad \text{otherwise}$$

4 fermions

• For the process $A \rightarrow bB \rightarrow bcC \rightarrow bcdD \rightarrow bcdeE$

the kinematic limit will be given by

$$M_{\max}^{2}(bcde) = \begin{cases} \frac{(m_{A}^{2} - m_{B}^{2})(m_{B}^{2} - m_{E}^{2})}{m_{B}^{2}} & \text{iff} & \frac{m_{A}}{m_{E}} > \frac{m_{B}^{2}}{m_{E}^{2}} \\ \frac{(m_{A}^{2} m_{C}^{2} - m_{B}^{2} m_{E}^{2})(m_{B}^{2} - m_{C}^{2})}{m_{B}^{2} m_{C}^{2}} & \text{iff} & \frac{m_{A}}{m_{E}} < \frac{m_{B}^{2}}{m_{C}^{2}} \\ \frac{(m_{A}^{2} m_{D}^{2} - m_{C}^{2} m_{E}^{2})(m_{C}^{2} - m_{D}^{2})}{m_{C}^{2} m_{D}^{2}} & \text{iff} & \frac{m_{A}}{m_{E}} < \frac{m_{C}^{2}}{m_{E}^{2}} \\ \frac{(m_{A}^{2} - m_{D}^{2})(m_{D}^{2} - m_{E}^{2})}{m_{D}^{2}} & \text{iff} & \frac{m_{A}}{m_{E}} < \frac{m_{C}^{2}}{m_{E}^{2}} \\ (m_{A} - m_{E})^{2} & \text{otherwise} \end{cases}$$

It is interesting to note that these may all be written as

$$M_{max}^2(f_1...f_n) = (m_l - m_F)^2 - (m_l m_F) \left(x + \frac{1}{x} - 2\right)$$

where $x \ge 1$ and depends on a product of mass ratios.

• If $m_l \approx m_F$ then $x \approx 1$ and

$$M_{max}^2(f_1...f_n) \approx (m_I - m_F)^2$$

 Therefore, we can think about these kinematics edges as mass differences if the differences are not too large.