

Flavour Tagging and Mixing @ LHCb

Sara Furcas

(INFN Milano Bicocca)
on behalf of the LHCb collaboration

Outline

LHCb experiment

Motivation and requirements

Flavour Tagging
Algorithms
Optimization and calibration

 ${f B^0}$ - ${f B^0}$ oscillations Status Measurement of Δm_d Measurement of Δm_s

Forward physics experiment $1.9 < \eta < 4.9$

<u>Detector requirements</u>

- Efficient trigger for both leptonic and hadronic final states
- → 3-Level trigger: L0, (hardware), HLT1-HLT2 (software)
- High resolution for vertex reconstruction (VELO) and good tracking efficiency
- Particle Identification
 - $\rightarrow \pi/K/p$ (RICH), $\pi/e/\gamma$ (ECAL), μ (MUON)

CP asymmetries or flavour oscillations need to identify the initial flavour of reconstructed B_d^0 and B_s^0 mesons (initial state with a b or b-bar quark).

OS (opposite side) \rightarrow muon, electron, kaon and inclusive secondary vertex. The charge of the **lepton** from semileptonic b decay or the **kaon** from the $b \rightarrow c \rightarrow s$ decay chain or an inclusive reconstruction of **secondary vertex** can be used to tag the flavour of the B meson opposite to the signal.

SS (same side) \rightarrow pion (B⁰_d or B⁺) or kaon (B⁰_s).

These algorithms determine the flavour of the B signal meson by exploiting the correlation in the fragmentation decay chain.

Flavour Tagging Procedure

The sensitivity of the measured asymmetry is directly related to the effective tagging efficiency, $\epsilon_{_{\!\!\!\text{eff}}}$, or $\emph{tagging power}$:

$$\varepsilon_{\rm eff} = \varepsilon_{\rm tag} D^2 = \varepsilon_{\rm tag} (1 - 2\omega)^2$$

R (right tagged) W (wrong tagged) U (untagged)

Where:

$$\varepsilon_{\text{tag}} = \frac{R+W}{R+W+U}$$
 $\omega = \frac{W}{R+W}$

$$\omega = \frac{W}{R + W}$$

Mistag fraction: calibrated with control channels (flavour specific)

Different taggers decisions are combined to built the combination OS or OS+SS using the single tagger mistag probabilities.

For each tagger:

- \rightarrow A tag decision $\mathbf{q}_i = \pm 1.0$ for the initial signal b-hadron containing a b/b-bar quark
- \rightarrow An estimate of the mistag probability η_i based on a Neural Network (using kinematical & geometrical information on the tagger and the event properties as inputs).

Flavour Tagging optimization

- Each tagger is optimized individually and in a second step the combination of taggers is optimized.
- \checkmark We use 2 flavour specific channels ($B^0 \rightarrow D^* \mu^+ \nu$ and $B^+ \rightarrow J/\psi K^+$), with high yield in LHCb.
- \checkmark Then the performance obtained using the set of optimized cuts is measured in B^0 → J/ψ K^{*0}.

Flavour Tagging optimization

- Each tagger is optimized individually and in a second step the combination of taggers is optimized.
- \checkmark We use 2 flavour specific channels ($B^0 \rightarrow D^{*-} \mu^+ \nu$ and $B^+ \rightarrow J/\psi K^+$), with high yield in LHCb.
- rightharpoonup Then the performance obtained using the set of optimized cuts is measured in $B^0 \rightarrow J/\psi K^{*0}$.

 $B^0 \rightarrow D^{*-} \mu^+ \nu \rightarrow \sim$ 48K signal events, B/S=0.3, fit to time dependent B_d oscillation to measure ω

$$A(t) = (1 - 2\omega)\cos(\Delta m_d t)$$

 $B^+ \rightarrow J/\psi K^+ \rightarrow \sim 11$ k signal events, B/S ~ 0.065 (t>0.3ps); compare the tag decision with the B $^\pm$ charge, count W, R events to get ω

 $B_d^0 \rightarrow J/\psi K^{*0}$ ~3.3k signal evens, B/S~15: fit to time dependent B_d oscillation to measure ω (cross-check)

 $B_s \rightarrow D_s$ (K⁺K⁻ π ⁻)(3) π ~1 300 signal events. This is a control channel for SSK tagger studies: too little statistic to optimize

Flavour Tagging calibration

The tagging optimization requires the predicted mistag η to be calibrated. First we use $B^+ \rightarrow J/\psi K^+$ channel to perform the calibration of the single tagger, then of the combination of all taggers.

Linear dependency of measured mistag fraction and calculated mistag probability:

$$\omega = p_0 + p_1 \cdot (\eta - \bar{\eta})$$

 $\omega \rightarrow$ measured mistag

 $\eta \rightarrow \text{calculated mistag}$ $\eta \rightarrow \text{mean value in the sample}$

Good calibration \rightarrow p0 = η , p1 = 1

$B^+ \rightarrow J/\psi K^+$			
	p_0	p_1	$<\eta_c>$
OS	$0.338 \pm 0.012 \pm 0.004$	$1.01 \pm 0.12 \pm 0.01$	0.339
$SS\pi + OS$	$0.354 \pm 0.010 \pm 0.004$	$1.00 \pm 0.11 \pm 0.01$	0.354

Flavour Tagging: validity & results

Studies of tagging performance in MC

$$B^+ \to J/\psi \ K^+$$

$$B_d \rightarrow J/\psi K^{*0}$$

$$B_s \rightarrow J/\psi \phi$$

Similar performance \rightarrow tagging parameters measured in B⁺ \rightarrow J/ ψ K⁺ can be used in the other B \rightarrow J/ ψ X analyses

OS	ϵ_{tag} (%)	ω (%)	$\epsilon_{\it eff}$ (%)
$B^0 o D^{*-} \mu^+ u_{\mu}$	18.3±0.2	33.6 ± 0.8	$1.97{\pm}0.18$
$B^+ \rightarrow J/\psi K^+$	15.4 ± 0.3	32.2 ± 1.2	$1.97{\pm}0.31$
$B^0 o J/\psi K^{*0}$	$15.8 {\pm} 0.7$	30.0 ± 6.6	$2.52{\pm}0.82$
$SS\pi + OS$	ϵ_{tag} (%)	ω (%)	ϵ_{eff} (%)
$B^0 o D^{*-} \mu^+ u_{\mu}$	28.9±0.2	34.2±0.8	2.87±0.32
$B^+ \rightarrow J/\psi K^+$	23.0±0.5	$33.9 {\pm} 1.1$	2.38 ± 0.33
$B^0 o J/\psi K^{*0}$	26.1 ± 0.9	33.6 ± 5.1	$2.82{\pm}0.87$

Mixing

$B^0 - B^0$ oscillations

In the Standard Model the mixing is described by the box diagram.

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \, \xi^2 \left| \frac{V_{ts}}{V_{td}} \right|^2$$

In the ratio most of theoretical uncertainties have been cancelled

$$\xi = (f_{B_s}\sqrt{B_{B_s}})/(f_{B_d}\sqrt{B_{B_d}}) = 1.210^{+0.047}_{-0.035}$$

$$\left| \frac{V_{td}}{V_{ts}} \right| = 0.2061 \pm 0.0012 \text{(exp)} ^{+0.0080}_{-0.0060} \text{(lattice)}$$

Present experimental status

$$\Delta m_d = 0.507 \pm 0.005 \ ps^{-1}$$
 world average, PDG $\Delta m_s = 17.77 \pm 0.10 ({
m stat}) \pm 0.07 ({
m sys}) \ ps^{-1}$ CDF,

K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).

B⁰ oscillations

WHY:

- → Validate flavour tagging calibration in an hadronic decay
- → Proof for LHCb to perform a measurement of a time dependent asymmetry

Signal: $\mathbf{B}^0 \to \mathbf{D}^- (\mathbf{K}^+ \pi^- \pi^-) \pi^+ (\sim 6k \text{ events})$

- Mass
- Propertime
- Flavour Tagging Decision
- Calibrated Mistag Probability

B⁰ oscillations

 $B^0 \to D^- \left(K^+ \; \pi^- \; \pi^- \right) \; \pi^+$

$$\Delta m_d = 0.499 \pm 0.032 \text{ (stat.)} \pm 0.003 \text{ (syst.) ps}^{-1}$$

Study	$\Delta(\Delta m_d) [\mathrm{ps}^{-1}]$	p_0	p_1
proper time resolution	0.000	0.000	0.00
proper time acceptance	0.002	0.001	0.00
variation of η_c PDF	0.000	0.002	0.05
floating fit parameters	0.001	0.0001	0.00
double Gaussian mass signal PDF	0.001	0.000	0.00
z-scale	0.0005	-	-
momentum scale	0.0005	-	-
Sum	0.003	0.002	0.05

B_s oscillations

Necessary *ingredients* for likelihood:

- Mass
- Propertime
- ProperTime Resolution

$$<\sigma_{t}> = 44 \text{ fs } (D_{s}\pi)$$

$$<\sigma_{\rm t}> = 36 \text{ fs } ({\rm D_s} 3\pi)$$

- Flavour Tagging Decision
- Calibrated Mistag Probability \rightarrow re-calibrated using B⁰ \rightarrow D⁻ π ⁺

decay mode	# signal candidates
$B_s \to D_s^-(\phi \pi^-) \pi^+$	515 ± 25
$B_s \to D_s^-(K^*K)\pi^+$	338 ± 27
$B_s \to D_s^-(K^+K^-\pi^-)\pi^+$	283 ± 27
$B_s \to D_s^- (K^+ K^- \pi^-) 3\pi$	245 ± 46

 $\sigma = 18.1 \text{ MeV/c}^2 (D_s \pi)$

 σ = 12.7 MeV/c² (D_s3 π)

B_s oscillations

Δ ms = 17.63±0.11(stat)±0.04(sys)ps⁻¹

B_s oscillations

Δ ms = 17.63±0.11(stat)±0.04(sys)ps⁻¹

Amplitude Scar	Am	olitud	le S	car
-----------------------	----	--------	------	-----

 $\Delta_{\Delta m_s}[\mathrm{ps}^{-1}]$ source proper time resolution 0.006proper time resolution model 0.001 proper time acceptance function 0.000fixed parameters floating 0.003diff. background shape in mass fit 0.010phys. bkg mass templates 0.002 0.026 variation of η_c and σ_t PDFs 0.018 z-scale momentum scale 0.018 $\Delta\Gamma_s$ 0.0020.038 total systematic uncertainties

Conclusions

With 2010 data: ~36 pb⁻¹ collected at $\sqrt{s} = 7$ TeV

- → optimization and calibration of OS & OS+SS flavour tagging using different control channels.
- → Mistag probability calibrated on $B^+ \rightarrow J/\psi$ K⁺ and cross checked on $B^0 \rightarrow J/\psi$ K^{*0}

Tagging power & mistag:

Tagging power & mistag:
$$<\epsilon_{tag}^{OS}>=1.97\pm0.31\%$$
 $<\omega^{OS}>=32.2\pm1.2\%$ $<\epsilon_{tag}^{OS+SS}>=2.38\pm0.33\%$ $<\omega^{OS+SS}>=33.9\pm1.1\%$

→ Using the flavour tagging results, we perform a study on B⁰-B⁰ oscillations obtaining results compatible with CDF. Improvement with new 2011 data.

$$\Delta m_d = 0.499\pm0.032(stat)\pm0.003(sys)ps^{-1}$$

 $\Delta m_s = 17.63\pm0.11(stat)\pm0.04(sys)ps^{-1}$

