SEARCH FOR $e \rightarrow \tau$ LFV AT THE ELECTRON-ION COLLIDER (EIC)

Work published online (arXiv: 1006.5063) and in JHEP

Matt Gonderinger
NPAC, University of Wisconsin-Madison
Pheno, 2011.05.09
with M. J. Ramsey-Musolf

OUTLINE

- Review of present LFV limits
- Introduction to leptoquarks
- **EIC** probe of leptoquark $e \rightarrow \tau$
- Comparison of EIC with $\tau \rightarrow e \gamma$ limits
- Concluding remarks

OVERVIEW OF LFV SEARCHES

Present & future limits for LFV processes:

Process	Experiment	Limit (90% C.L.)	Year
$\mu o e \gamma$	MEGA	$Br < 1.2 \times 10^{-11}$	2002
$\mu + Au \rightarrow e + Au$	SINDRUM II	$\Gamma_{conv}/\Gamma_{capt} < 7.0 \times 10^{-13}$	2006
$\mu \rightarrow 3e$	SINDRUM	$Br < 1.0 \times 10^{-12}$	1988
$ au o e\gamma$	BaBar	$Br < 3.3 \times 10^{-8}$	2010
$ au ightarrow \mu \gamma$	BaBar	$Br < 6.8 \times 10^{-8}$	2005
$\tau \rightarrow 3e$	BELLE	$Br < 3.6 \times 10^{-8}$	2008
$\mu + N \rightarrow e + N$	Mu2e	$\Gamma_{conv}/\Gamma_{capt} < 6.0 \times 10^{-17}$	2017?
$\mu o e \gamma$	MEG	$Br \lesssim 10^{-13}$	2011?
$ au o e\gamma$	Super-B	$Br \lesssim 10^{-9}$	> 2020?

QUESTIONS FOR EIC LFV SEARCH

- The EIC is a proposed high energy, high luminosity electronproton/ion collider
- Is a search for $e \rightarrow \tau$ at the EIC feasible given present limits?
 - What sort of cross sections can be expected and what integrated luminosities are needed?
- Would EIC limits on $e \rightarrow \tau$ be competitive with present and future limits from other LFV processes?
 - EIC and Super-B are roughly the same time scale, so $au o e \gamma$ limits are important
 - Present limits on $\mu \to e$ and $\mu \to e\gamma$ are already orders of magnitude stronger than $\tau \to e\gamma$ limits and will continue to improve

WHY LEPTOQUARKS?

- Deep inelastic $e+p \rightarrow \tau + X$ at the EIC can be described by a four-fermion operator
- Four-fermion operator arises in RPV SUSY and leptoquark models when integrating out massive propagators
 - Expected to give larger cross sections than other operators (tree level process, no loop or α suppression)

- lacktriangle Use leptoquarks for an initial analysis of e o au
 - Direct comparison with limits from HERA

BRW LEPTOQUARK FRAMEWORK

- Leptoquarks (LQs) couple leptons and quarks
- LQs come in many different types:
 - Spin: 0 (scalar) or 1 (vector)
 - Fermion number: |F| = |3B + L| = 0, 2
 - $SU(2)_L$ representation: singlet, doublet, triplet
 - Chirality: L- or R-handed couplings
- Buchmuller-Ruckl-Wyler (BRW) parameterization catalogs all possible types
 - SM gauge invariant renormalizable Lagrangian gives interactions between LQs and fermions
- 14 LQs in all, assuming L- and R-handed couplings are independent

CROSS SECTION

■ High mass approximation: $s \ll M_{LO}^2$

$$\sigma_{scalar}^{F=0} = \frac{s}{32\pi} \left[\frac{\lambda_{1\alpha}\lambda_{3\beta}}{M_{LQ}^2} \right]^2 \left\{ \int dx dy \frac{1}{2} x \overline{q}_{\alpha}(x, xs) + \int dx dy \frac{(1-y)^2}{2} x q_{\beta}(x, -u) \right\}$$

■ ZEUS and H1 experiments set limits on these ratios $\lambda_{1\alpha}\lambda_{3\beta}/M_{LQ}^2$ (limits are also taken from various other rare process searches)

EIC SENSITIVITY

- Ratios $\lambda_{1\alpha}\lambda_{3\beta}/M_{LO}^2$ are the quantities of interest
- Suppose $\sqrt{s} = 90~GeV$ and $1000~fb^{-1}$ integrated luminosity
 - ⇒ probe $e \to \tau$ cross sections $\sigma \gtrsim 0.001 \ fb$ (order 1 events)
- $\sigma = 0.001 \ fb$ corresponds to the smallest value of $\lambda_{1\alpha}\lambda_{3\beta}/M_{LQ}^2$ to which the EIC would be sensitive in principle
 - \blacksquare These values are generally $\sim 1-2$ orders of magnitude smaller than ZEUS/H1 limits
 - **Exact** decrease depends on type of LQ, quark generations (α, β)
- The EIC surpasses HERA limits because of the larger luminosity
- How do potential EIC limits on $\lambda_{1\alpha}\lambda_{3\beta}/M_{LQ}^2$ compare with limits on those same ratios from $\tau \to e\gamma$?

LEPTOQUARK LOOPS

 $au au o e \gamma$ decay via leptoquark loops:

- These diagrams are proportional to $\lambda_{1\alpha}\lambda_{3\beta}/M_{LO}^2$ with $\alpha=\beta$
 - $\tau \rightarrow e \gamma$ limits are only relevant for these "quark flavor-diagonal" cases

LOOP CALCULATIONS

$$R(\tau \to e\gamma) \equiv \frac{\Gamma(\tau \to e\gamma)}{\Gamma(\tau \to e\overline{\nu}_e \nu_\tau)} = \frac{48\pi^3 \alpha_{EM}}{G_F^2} \left(\left| \mathbf{A_2^L} \right|^2 + \left| \mathbf{A_2^R} \right|^2 \right) \leq 1.85 \times 10^{-7}$$

- $A_2^{L,R}$ are the magnetic moment operator coefficients in the general form for the $au o e \gamma^*$ amplitude
- Calculate $A_2^{L,R}$ coefficients in the limit $m_e, m_\tau \to 0$, $m_q/M_{LQ} \ll 1$ and extract limits on $\lambda_{1\alpha}\lambda_{3\beta}/M_{LQ}^2$
 - Actually obtain a range of possible upper bounds on $\lambda_{1\alpha}\lambda_{3\beta}/M_{LQ}^2$ from $\tau \to e\gamma$ because of a sum over the quark generations

ALL RESULTS

■ Dashed lines are $\tau \rightarrow e \gamma$ upper bounds

EIC VS. $\tau \rightarrow e \gamma$

- Generally, where $\tau \rightarrow e \gamma$ limits apply:
 - With $1000~fb^{-1}$, EIC can probe beyond the current $\tau \to e\gamma$ limits for all three generations
- Suppose Super-B factories improve the $\tau \to e \gamma$ branching fraction limit by an order of magnitude: $Br(\tau \to e \gamma) \sim 10^{-9}$
 - Limits on the ratios $\lambda_{1\alpha}\lambda_{3\alpha}/M_{LO}^2$ decrease by a factor of $\sqrt{10}$
 - The EIC is still competitive
- Additionally the EIC has two advantages over $\tau \rightarrow e \gamma$ searches
 - $e \to \tau$ can probe leptoquarks which evade $\tau \to e \gamma$ limit $(\widetilde{S}_{1/2}^L)$ because of a cancellation of electric charges in the A_2 coefficients at first order in m_q^2/M_{LQ}^2
 - Like HERA, EIC could set limits on $\lambda_{1\alpha}\lambda_{3\beta}/M_{LQ}^2$ for all α,β but $\tau\to e\gamma$ is restricted to quark flavor-diagonal cases $\alpha=\beta$

LEPTOQUARKS AND BEYOND

- Feasibility of an EIC search for $e \rightarrow \tau$ in a leptoquark framework is worth further study
 - An initial analysis of backgrounds, cuts, and tau identification efficiency has been done by members of the EIC collaboration at Brookhaven led by Abhay Deshpande
- Can the EIC probe LFV arising from other non-leptoquark models?
 - If $e \to \tau$ events are observed at the EIC, can they be used to discriminate between various models of LFV?
- How can the LHC probe leptoquarks with more complicated flavor structure? (current work)

REFERENCES

- ZEUS and H1 leptoquark limits
 - S. Chekanov et al. (ZEUS), Eur. Phys. J. C44, 463 (2005), arXiv:hep-ex/0501070
 - A. Aktas et al. (H1), Eur. Phys. J. C52, 833 (2007), arXiv:hep-ex/0703004
- Rare process limits on leptoquarks
 - S. Davidson, D. C. Bailey, and B. A. Campbell, Z. Phys. C61, 613 (1994), arXiv:hep-ph/9309310
- Current $\tau \rightarrow e \gamma$ limit
 - B. Aubert et al. (BABAR), Phys. Rev. Lett. 104, 021802 (2010), arXiv:0908.2381 [hep-ex]

THE END

Many thanks!