Monte Carlo Tuning with ATLAS Data

Frank Siegert on behalf of the ATLAS collaboration

Albert-Ludwigs-Universität Freiburg





### Table of Contents

### Tuning framework

Description of tools for parameter minimisation.

### ATLAS measurements

Short summary of ATLAS measurements used in tuning.

#### New ATLAS tunes

Determination of best fit parameters for Herwig+Jimmy and Pythia6 and their comparison to data.

### Conclusions

### What is Monte-Carlo tuning and why is it necessary?

### Parameters in Monte-Carlo predictions

#### Perturbative parameters

- Particle properties masses, widths, ...
- Factorisation/renormalisation scale process specific
- Running couplings some freedom – but consistent with PDF!
- Parton shower Evolution kernels

#### Are chosen/calculated, not tuned!

#### Non-perturbative parameters

- Multiple Parton Interactions (MPI) Infrared cut-off, energy evolution, ...
- Hadronisation and hadron decays String vs. Cluster, BRs, form factors
- Primordial k<sub>⊥</sub>
   k<sub>⊥</sub> distribution for incoming partons
- Parton shower Infrared cut-off

### Unknown $\Rightarrow$ Need tuning to data.

### Examples of relevant measurements

| MPI                    | Underlying Event (UE) measurements at Tevatron and LHC |
|------------------------|--------------------------------------------------------|
| Hadronisation          | LEP data on event shapes, identified hadrons,          |
| Primordial $k_{\perp}$ | $p_{\perp}^{\ell\ell}$ in Drell-Yan events             |

### How to compare to published measurements: Rivet

# Features of the Rivet toolkit

- Generator independent implementation of analyses
- Event input through HepMC standard
- ⇒ Proper particle level definition of measurement crucial (unfolded from detector effects, not "Z in event record",...)

# Available analyses

### > 100 experimental publications have been implemented in Rivet.

- 15 from the LHC already (from all 4 experiments)
- Full spectrum from Tevatron: Distributions in W/Z, prompt photons, jets, UE, MinBias ... starting in 1988!
- ▶ LEP data from ALEPH, DELPHI, OPAL
- Only a few from HERA ( $\rightarrow$  HZTool)

### Tuning using Professor

# Basic question

What is the most efficient way of scanning the *n*-dimensional parameter space of a MC generator to find the point with minimal  $\chi^2$  vs. data?

### Procedure

- 1. Randomly sample N parameter points in n-dimensional space
- 2. Perform N generator runs and fill observables (e.g. with Rivet)
- 3. For each bin of each observable: Interpolate generator response in nD by fitting 3rd order polynomial
- 4. Minimise  $\chi^2 = \sum_{\text{bins}} \frac{(\text{interpolation} \text{data})^2}{\text{error}^2}$
- $\Rightarrow$  Parameter values with expected best fit

### The ATLAS detector



- Multi-purpose detector with three layers: Inner detector (tracking), calorimeters, muon spectrometer
- Additionally, Minimum Bias Trigger Scintillators were used in low-lumi runs to provide MB trigger

### ATLAS Minimum Bias measurements

### arXiv:1012.5104 [hep-ex]

- Charged particle distributions:  $\frac{dN}{dp_{\perp}}$ ,  $\frac{dN}{dN_{ch}}$ ,  $\frac{dN}{d\eta}$ ,  $\langle p_{\perp} \rangle$  vs.  $N_{ch}$
- $\sqrt{s} = 0.9$ , 2.36 and 7 TeV
- Different event selection cuts:  $N_{\rm ch} \ge 1, 2, 6, 20$
- ▶ Different particle selection cuts: p⊥ > 100, 500 MeV



### ATLAS Underlying Event measurements

# arXiv:1012.0791 [hep-ex] and arXiv:1103.1816 [hep-ex]

- ▶ Both select leading object (track/cluster) with  $p_{\perp} > 1$  GeV,  $|\eta| \le 2.5$
- ► Focus on activity in transverse region:  $60^{\circ} < |\Delta \phi = \phi - \phi_{\text{lead}}| < 120^{\circ}$ (most sensitive to UE)
- Activity = charged particles (tracks, 1012.0791) or charged+neutral particles (calorimeter clusters, 1103.1816)







### Jet measurements

# Phys. Rev. D 83, 052003 (2011) [arXiv:1101.0070]

- Jet shapes in inclusive jet production
- Sensitive to initial state radiation
- Especially useful in Pythia tuning: FSR, ISR and "IFSR"

### ATLAS-CONF-2010-049

- Fragmentation function of track jets
- Also sensitive to ISR
- Small tension of Pythia shower between fragmentation function and jet shapes

# arXiv:1102.2696 [hep-ex]

- Dijet azimuthal decorrelations
- Also sensitive to ISR

# arXiv:1012.5382 [hep-ex]

▶ W+jets measurements of leading jet  $p_{\perp}$  in electron and muon channel

### Overview

# Herwig+Jimmy: AUET2 tunes

- Relatively simple tuning, only 3 parameters (Jimmy MPI)
- ► No soft inclusive QCD modelled  $\Rightarrow$  Ignore MinBias
- ▶ Tunes for 10 PDFs using  $\approx$  50 CDF and ATLAS observables

# Pythia6: AMBT2 and AUET2 tunes

- ► Existing tune (AMBT1 for LO\* PDF) with focus on MinBias data ⇒ Not optimal performance for UE observables and jet shapes
- New tune uses MRST LO\*\* PDF
- Much more involved than Herwig+Jimmy:
  - ▶ 25 parameters (Hadronisation, ISR, MPI, primordial k⊥,...)
  - Hundreds of observables (LEP, Tevatron, ATLAS)
  - $\Rightarrow$  4 steps:
    - 1. Hadronisation flavour parameters (9) vs. LEP/SLD data
    - 2. FSR and hadronisation kinematics parameters (6) vs. LEP data
    - 3. ISR parameters (5) vs. jet data from Tevatron and ATLAS
    - 4. MPI parameters (5) vs. MinBias and UE data from Tevatron and ATLAS

### Herwig+Jimmy: AUET2 tunes

# Tuned parameters

Only three MPI parameters:

- Proton radius PRRAD
- ► Cut-off of QCD 2→2 scatterings in MPI and its energy dependence:

$$\texttt{PTJIM}(\sqrt{s}) = \texttt{PTJIM0}\left(\frac{\sqrt{s}}{1800\,\text{GeV}}\right)^{\texttt{EXF}}$$

### Features

- Tunes for 10 PDF sets: MRSTMCal (LO\*\*), CT09MC2, CTEQ611, MSTW08L0, CTEQ6.6, CT10, MSTW08NL0, HERAPDF1.0, HERAdis, NNPDF2.1
- Hard scattering required in model
  - $\Rightarrow$  MinBias data ignored
  - $\Rightarrow$  Soft parts of UE observables excluded from fits

### Herwig+Jimmy: AUET2 tunes



### Herwig+Jimmy: AUET2 tunes



# Step 1: Hadronisation flavour parameters (9) vs. LEP/SLD data

► Flavour parameters tuned similarly as in [Buckley, Hoeth, Lacker, Schulz, v. Seggern: arXiv:0907.2973]



# Step 2: FSR and hadronisation kinematics parameters (6) vs. LEP data

- In Pythia, FSR from resonance (Z/γ\*) decays is treated as distinct from ISR and FSR from partons produced in ISR ⇒ Standalone tune of FSR and hadronisation kinematics to LEP data
- ► Again, similar as in arXiv:0907.2973 but with more input data
- $\blacktriangleright$  Previous ATLAS tune (AMBT1) used Pythia's default parameters here, which are not optimal for  $p_{\perp}\text{-}\text{ordered}$  shower
- ▶ New tune (in red) does significantly better than AMBT1





- Jet shape measurements: AMBT1 jets too narrow
- Same problem in Perugia0 tune, fixed in Perugia2010 ⇒ New tune to follow Perugia2010 strategy for ISR
- Also includes primordial parton  $k_{\perp}$  inside the hadron in tuning



# Step 4: MPI parameters (5) vs. MinBias and UE data

- ► MPI least theoretically constrained ⇒ tuned last
- Not possible to find good tune (i.e. < 20% discrepancies) simultaneously for MB and UE data
  - $\Rightarrow$  two separate tunes:
- AMBT2 for MinBias data
  - Improvements in statistically significant regions
  - $p_{\perp}$  distribution incompatibel with chosen ISR setup



# Step 4: MPI parameters (5) vs. MinBias and UE data

- ► MPI least theoretically constrained ⇒ tuned last
- Not possible to find good tune (i.e. < 20% discrepancies) simultaneously for MB and UE data
  - $\Rightarrow$  two separate tunes:
- AUET2 for UE data
  - Significant improvement over AMBT1 in plateau region
  - Also describes  $p_{\perp} > 100$  MeV data well



### Conclusions

### Summa<u>ry</u>

- ► Corrected ATLAS data are available for many MB, UE and jet observables
- It has been used for tuning Herwig+Jimmy and Pythia6
- ▶ Herwig+Jimmy has been tuned for several LO, mLO and NLO PDFs
- Limitations of the model have been demonstrated
- ▶ Pythia6 has been tuned for one PDF in all aspects: Hadronisation, FSR, ISR, MPI
- Significantly improved FSR and ISR tune
- ► MPI tune revealed limitations in describing MB and UE data simultaneously ⇒ Separate tunes AMBT2 and AUET2

# Outlook

- Probably last Herwig+Jimmy tune (due to model limitations)
   → future: Herwig++
- Incorporation of data from 2.76 TeV LHC run

# Backup

| Switch    |                                                                                        | A*T2  |
|-----------|----------------------------------------------------------------------------------------|-------|
| MSTP(52)  | Use LHAPDF for external PDFs                                                           | 2     |
| MSTP(51)  | Use MRST LO** PDF                                                                      | 20651 |
| MSTJ(11)  | Bowler-fragmentation function for heavy quarks                                         | 5     |
| MSTJ(41)  | p   -ordered shower                                                                    | 12    |
| MSTP(70)  | $\overline{\text{ISR}}$ regularisation scheme with cut-off at PARP(62)/2               | 0     |
| MSTP(64)  | Set $\alpha_{S}$ scheme for ISR to CMW b)                                              | 3     |
| MSTP(72)  | Allow colour dipoles stretched between ISR dipoles to radiate FSR                      | 2     |
| MSTP(3)   | Allow different $\alpha_{S}$ for different shower parts a)                             | 1     |
| MSTU(112) | Set number of flavours considered in $\alpha_S$ expression                             | 4     |
| PARU(112) | Set $\Lambda$ in $\alpha_S$ running coupling calculation algorithm to $\Lambda$ in PDF | 0.265 |
| PARP(1)   | Set $\Lambda_{OCD}$ in running $\alpha_S$ for hard scattering to $\Lambda$ in PDF      | 0.265 |
| PARP(61)  | Set $\Lambda_{QCD}^{QCD}$ in running $\alpha_S$ for ISR to $\Lambda$ in PDF            | 0.265 |

a)  $\Lambda$  is given by PARP(1) for hard interactions, by PARP(61) for ISR, by PARP(72) for FSR not from a resonance decay, and by PARJ(81) for FSR from a resonance decay

b) This setting was introduced in PYTHIA6.419 and therefore undocumented in the PYTHIA6 manual. The release notes of PYTHIA6 refer to [1].

#### Observable-weight combinations for Pythia6 flavour tuning

| Observable                                                                         | Weight  |
|------------------------------------------------------------------------------------|---------|
| OPAL measurements $Z \rightarrow q\overline{q}$ , $\sqrt{s} = 91.2 \text{ GeV}[2]$ |         |
| b quark frag. function $f(x_B^{\text{weak}})$                                      | 1       |
| Mean of b quark frag. function $f(x_B^{\text{weak}})$                              | 1       |
| u d s events mean charged multiplicity                                             | 1       |
| c events mean charged multiplicity                                                 | 1       |
| b events mean charged multiplicity                                                 | 1       |
| All events mean charged multiplicity                                               | 1       |
| LEP particle multiplicities ( $\sqrt{s} = 91.2$ GeV), taken from                   | PDG [3] |
| $\pi^{\pm}$ multiplicity                                                           | 1       |
| π <sup>0</sup> multiplicity                                                        | 1       |
| $\pi^0/\pi^{\pm}$ multiplicity ratio                                               | 6       |
| $K^+/\pi^+$ multiplicity ratio                                                     | 6       |
| $K^0/\pi^{\perp}$ multiplicity ratio                                               | 6       |
| $\eta / \pi^{\pm}$ multiplicity ratio                                              | 2       |
| $\eta'(958)/\pi^{\perp}$ multiplicity ratio                                        | 1       |
| $D^+/\pi^+$ multiplicity ratio                                                     | 1       |
| $D^0/\pi^{\pm}$ multiplicity ratio                                                 | 1       |
| $D_s^+/\pi^+$ multiplicity ratio                                                   | 2       |
| $(B^+, B^0_d)/\pi^{\pm}$ multiplicity ratio                                        | 1       |
| $B^+/\pi^{\pm}$ multiplicity ratio                                                 | 1       |
| $B_s^0/\pi^{\pm}$ multiplicity ratio                                               | 2       |
| $\rho^0(770)/\pi^{\pm}$ multiplicity ratio                                         | 9       |
| $\rho^+(770)/\pi^{\pm}$ multiplicity ratio                                         | 9       |
| $\omega(782)/\pi^{\pm}$ multiplicity ratio                                         | 9       |
| $K^{*+}(892)/\pi^{\pm}$ multiplicity ratio                                         | 2       |
| $K^{*0}(892)/\pi^{\pm}$ multiplicity ratio                                         | 2       |
| $\phi(1020)/\pi^{\pm}$ multiplicity ratio                                          | 1       |
| $D^{*+}(2010)/\pi^{\pm}$ multiplicity ratio                                        | 1       |
| $D_8^{*+}(2112)/\pi^{\pm}$ multiplicity ratio                                      | 1       |
| $B^*/\pi^{\pm}$ multiplicity ratio                                                 | 1       |
| $p/\pi^{\pm}$ multiplicity ratio                                                   | 3       |
| $\Lambda / \pi^{\pm}$ multiplicity ratio                                           | 4       |
| $\Sigma^0/\pi^{\pm}$ multiplicity ratio                                            | 2       |
| $\Sigma^{\pm}/\pi^{\pm}$ multiplicity ratio                                        | 2       |
| $\Xi^{-}/\pi^{\pm}$ multiplicity ratio                                             | 1       |
| $\Delta^{++}(1232)/\pi^{\pm}$ multiplicity ratio                                   | 1       |
| $\Sigma^{\pm}(1385)/\pi^{\pm}$ multiplicity ratio                                  | 1       |

-

| Parameter $i$ |                              | $i_{min}$ | i <sub>max</sub> | A*T2  | Default |
|---------------|------------------------------|-----------|------------------|-------|---------|
| PARJ(1)       | Di-quark suppression         | 0.0       | 0.2              | 0.073 | 0.10    |
| PARJ(2)       | Strange suppression          | 0.1       | 0.4              | 0.2   | 0.30    |
| PARJ(3)       | Strange di-quark suppression | 0.2       | 1.0              | 0.94  | 0.40    |
| PARJ(4)       | Spin-1 di-quark suppression  | 0.0       | 0.4              | 0.032 | 0.05    |
| PARJ(11)      | Spin-1 light meson           | 0.0       | 1.0              | 0.31  | 0.50    |
| PARJ(12)      | Spin-1 strange meson         | 0.0       | 1.0              | 0.4   | 0.60    |
| PARJ(13)      | Spin-1 heavy meson           | 0.0       | 1.0              | 0.54  | 0.75    |
| PARJ(25)      | n suppression                | 0.0       | 1.0              | 0.63  | 1.00    |
| PARJ(26)      | $\eta'$ suppression          | 0.0       | 1.0              | 0.12  | 0.40    |

| Observable                                                 | Fit range                         | Weight |
|------------------------------------------------------------|-----------------------------------|--------|
| Studies of QCD with the ALEPH detector. [4]                |                                   |        |
| Scaled momentum, $x_p =  p  /  p_{\text{heam}} $ (charged) |                                   | 1      |
| Rapidity w.r.t. thrust axes, $y_T$ (charged)               | $x \leq 4$                        | 1      |
| Rapidity w.r.t. thrust axes, $y_T$ (charged)               | $4 \leq x \leq 6$                 | 5      |
| In-plane $p_T$ in GeV w.r.t. sphericity axes (charged)     |                                   | 1      |
| Out-of-plane $p_T$ in GeV w.r.t. sphericity axes (charged) | $1 \le x \le 3.5$                 | 1      |
| Mean $\pi^0$ multiplicity                                  |                                   | 10     |
| Jet rates and event shapes at LEP I and II [5]             |                                   |        |
| Thrust minor ( $E_{CMS} = 91.2 \text{ GeV}$ )              | $\ln T_{\rm minor} < -4.0$        | 5      |
| Thrust minor $(E_{CMS} = 91.2 \text{ GeV})$                | $-4.0 \le \ln T_{minor} \le -0.5$ | 2      |
| Jet mass difference $(E_{CMS} = 91.2 \text{ GeV})$         |                                   | 1      |
| Aplanarity ( $E_{CMS} = 91.2 \text{ GeV}$ )                |                                   | 1      |
| Oblateness ( $E_{CMS} = 91.2 \text{ GeV}$ )                |                                   | 1      |
| Sphericity ( $E_{CMS} = 91.2 \text{ GeV}$ )                |                                   | 1      |
| Thrust ( $E_{CMS} = 91.2 \text{ GeV}$ )                    |                                   | 1      |
| Heavy jet mass ( $E_{CMS} = 91.2 \text{ GeV}$ )            |                                   | 1      |
| Total jet broadening ( $E_{CMS} = 91.2 \text{ GeV}$ )      |                                   | 1      |
| Wide jet broadening ( $E_{CMS} = 91.2 \text{ GeV}$ )       |                                   | 1      |
| C-Parameter ( $E_{CMS} = 91.2 \text{ GeV}$ )               |                                   | 1      |
| Thrust major ( $E_{CMS} = 91.2 \text{ GeV}$ )              |                                   | 1      |
| Delphi MC tuning on event shapes and identified particle   | es. [6]                           |        |
| In-plane $p_{\perp}$ in GeV w.r.t. thrust axes             | $0 \le x \le 8$                   | 2      |
| In-plane $p_{\perp}$ in GeV w.r.t. thrust axes             | $8 \le x \le 14$                  | 6      |
| Out-of-plane $p_{\perp}$ in GeV w.r.t. thrust axes         | $0 \le x \le 1$                   | 2      |
| Out-of-plane $p_{\perp}$ in GeV w.r.t. thrust axes         | $1 \leq x \leq 10$                | 10     |
| Rapidity w.r.t. thrust axes, $y_T$                         |                                   | 2      |
| Rapidity w.r.t. sphericity axes, $y_S$                     |                                   | 2      |
| Scaled momentum, $x_p =  p / p_{\text{beam}} $             |                                   | 2      |
| 1 – Thrust                                                 |                                   | 1      |
| Thrust major, M                                            |                                   | 1      |

| Thrust minor, m                                                                        | 1    |
|----------------------------------------------------------------------------------------|------|
| Oblateness = $M - m$                                                                   | 1    |
| Sphericity, S                                                                          | 1    |
| Aplanarity, A                                                                          | 1    |
| Planarity, P                                                                           | 1    |
| C parameter                                                                            | 1    |
| D parameter                                                                            | 1    |
| Heavy hemisphere masses, $M_h^2 / E_{vis}^2$                                           | 1    |
| Light hemisphere masses, $M_1^2 / E_{vis}^2$                                           | 1    |
| Difference in hemisphere masses, $M_{J}^{2}/E_{rin}^{2}$                               | 1    |
| Wide hemisphere broadening, Bmax                                                       | 1    |
| Narrow hemisphere broadening, $B_{min}$                                                | 1    |
| Total hemisphere broadening, B <sub>sum</sub>                                          | 1    |
| Difference in hemisphere broadening, B <sub>diff</sub>                                 | 1    |
| Differential 3-jet rate with Durham algorithm, $D_2^{\text{Durham}}$                   | 1    |
| Differential 4-jet rate with Durham algorithm, $D_3^{\text{Durham}}$                   | 1    |
| Differential 5-jet rate with Durham algorithm, $D_A^{\text{Durham}}$                   | 1    |
| Energy-energy correlation, EEC                                                         | 1    |
| Asymmetry of the energy-energy correlation, AEEC                                       | 1    |
| Mean charged multiplicity                                                              | 5000 |
| Study of the b-quark fragmentation function at LEP 1 [7]                               |      |
| b quark fragmentation function $f(x_{\text{weak}}^{\text{weak}})$ $0.25 \le x \le 1.0$ | 10   |
| $M_{\text{max}}(I) = I = I$                                                            |      |
| Mean of b quark fragmentation function $f(x_B^{\text{const}})$                         | 3    |
| Iet rates in $e^+e^-$ at IADE [35-44 GeV] and OPAL [91-189 GeV]. [8]                   |      |
| Integrated 2-jet rate with Durham algorithm (91.2 GeV)                                 | 4    |
| Integrated 3-jet rate with Durham algorithm (91.2 GeV)                                 | 4    |
| Integrated 4-jet rate with Durham algorithm (91.2 GeV)                                 | 4    |
| Integrated 5-jet rate with Durham algorithm (91.2 GeV)                                 | 4    |
| Integrated $\geq$ 6-jet rate with Durham algorithm (91.2 GeV)                          | 4    |
| Differential 2-jet rate with Durham algorithm (91.2 GeV)                               | 4    |
| Differential 3-jet rate with Durham algorithm (91.2 GeV)                               | 4    |

| Differential 4-jet rate with Durham algorithm (91.2 GeV)<br>Differential 5-jet rate with Durham algorithm (91.2 GeV)                                          | $\frac{4}{4}$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Measurements of flavor dependent fragmentation functions in $Z^0 - > q\bar{q}$ events [2] $uds$ events scaled momentum $uds$ events mean charged multiplicity | 10<br>500     |
| Hadron multiplicities in hadronic $e^+e^-$ events [3]<br>Mean $\pi^+$ multiplicity<br>Mean $\pi^0$ multiplicity                                               | 500<br>500    |

| Parameter $i$ |                                         | $i_{min}$ | $i_{max}$ | A*T2  | Default |
|---------------|-----------------------------------------|-----------|-----------|-------|---------|
| PARJ(21)      | $\sigma_{\text{string}}$                | 0.20      | 0.45      | 0.30  | 0.36    |
| PARJ(41)      | Lunda                                   | 0.1       | 1.8       | 0.368 | 0.30    |
| PARJ(42)      | Lund                                    | 0.2       | 2.5       | 1.004 | 0.58    |
| PARJ(47)      | Bowler-fragmentation (for heavy quarks) | 0.0       | 1.5       | 0.873 | 1.00    |
| PARJ(81)      | AOCD                                    | 0.18      | 0.32      | 0.256 | 0.29    |
| PARJ(82)      | Shower cut-off                          | 0.4       | 2.0       | 0.830 | 1.00    |

| Observable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\sqrt{s}$ | Fit range                          | Weight |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------|--------|
| ATLAS jet shapes [9]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                    |        |
| Diff. jet shapes $a_{\rho}$ for $p_{\perp} \in [30, 40]$ GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 TeV      |                                    | 1      |
| Diff. jet shapes $a^{a}\rho$ for $p_{\perp} \in [40, 60]$ GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 TeV      |                                    | 1      |
| Diff. jet shapes $a^{(a)}\rho$ for $p_{(a)} \in [60, 80]$ GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 TeV      |                                    | 1      |
| Diff. jet shapes $a_{\rho}$ for $p_{\perp} \in [80, 110]$ GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 TeV      |                                    | 1      |
| Diff. jet shapes $a_{\rho}$ for $p_{\perp} \in [110, 160]$ GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 TeV      |                                    | 1      |
| Diff. jet shapes $a_{\rho}$ for $p_{\perp} \in [160, 210]$ GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 TeV      |                                    | 1      |
| Diff. jet shapes $a_{\rho}$ for $p_{\perp} \in [210, 260]$ GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 TeV      |                                    | 1      |
| Diff. jet shapes $a_{\rho}^{a}$ for $p_{\perp} \in [260, 310]$ GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 TeV      |                                    | 1      |
| Diff. jet shapes $a_{\rho}$ for $p_{\perp} \in [310, 400]$ GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 TeV      |                                    | 1      |
| Diff. jet shape $\rho$ for $p_{\perp} \in [400, 500]$ GeV, $y \in [0.0, 2.8]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 TeV      |                                    | 5      |
| Diff. jet shape $\rho$ for $p_{\perp} \in [500, 600]$ GeV, $y \in [0.0, 2.8]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 TeV      |                                    | 5      |
| ATLAS dijet decorrelations [10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                    |        |
| $\Delta \phi_{12}$ , 110 < $p_{\perp}^{max}$ < 160 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 TeV      |                                    | 5      |
| $\Delta \phi_{12}$ , 160 < $p_{\perp}^{max}$ < 210 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 TeV      |                                    | 5      |
| $\Delta \phi_{12}$ , 210 < $p_{\perp}^{max}$ < 310 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 TeV      | $2.1 \le \Delta \phi_{12} \le \pi$ | 5      |
| $\Delta \phi_{12}, p_{\perp}^{\text{max}} < 310 \text{ GeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 TeV      | $2.3 \le \Delta \phi_{12} \le \pi$ | 5      |
| ATLAS track jets [11]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                    |        |
| Longit. jet frag. function, z for $p_{\perp}^{\text{jet}} \in [4, 6]$ GeV, $R = 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 TeV      |                                    | 5      |
| Longit. jet frag. function, z for $p_{\perp}^{\text{fet}} \in [6, 10]$ GeV, $R = 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 TeV      |                                    | 5      |
| Longit. jet frag. function, z for $p_{\perp}^{jet} \in [10, 15]$ GeV, $R = 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 TeV      |                                    | 5      |
| Longit. jet frag. function, z for $p_{\perp}^{j\bar{e}\bar{t}} \in [15, 24]$ GeV, $R = 0.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 TeV      |                                    | 5      |
| ATLAS W plus jets [13]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                    |        |
| $1^{st}$ jet $p_{\perp}$ (electron channel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 TeV      | $p_{\perp} > 40 \text{ GeV}$       | 5      |
| $1^{st}$ jet $p_{\perp}$ (muon channel )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 TeV      | $p_{\perp} > 40 \text{ GeV}$       | 5      |
| CDF $Z^0 p_{\perp}$ and total cross-section in $Z \rightarrow e^+e^-$ [14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                    |        |
| $p_{\perp}(Z^{0})^{\perp}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1800 GeV   | $p_{\perp} < 10 \text{ GeV}$       | 6      |
| CDF jet shapes [15]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                    |        |
| Differential jet shapes $b \rho(r/R)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1960 GeV   |                                    | 1      |
| D0 dijet $\phi$ decorrelations [16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                                    |        |
| $\Delta \phi_{12}, p_{\perp}^{max} \in [75, 100] \text{ GeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1960 GeV   |                                    | 2      |
| $\Delta \phi_{12}, p_{12}^{max} \in [100, 130] \text{ GeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1960 GeV   |                                    | 2      |
| $\Delta \phi_{12}, p_{max} \in [130, 180] \text{ GeV}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1960 GeV   |                                    | 2      |
| mark the second s | 10/0 C 31  |                                    |        |

<sup>a)</sup> This observable enters the fit for five different, non-overlapping rapidity windows with the same weight:  $y \in [0.0, 0.3], [0.3, 0.8], [0.8, 1.2], [1.2, 2.1], [2.1, 2.8]$ b) Atotal of B distributions with different, non-overlapping vindows for the jet- $p_{\perp}$  from 37 to 380 GeV entered the fit.

All had the same weight assigned.

| Description                                | PYTHIA Parameter | Tuning range | optimised value | AMBT1 | Perugia 2010 |
|--------------------------------------------|------------------|--------------|-----------------|-------|--------------|
| ISR cut-off                                | PARP(62)         | 1.75-3.0     | 2.80            | 1.025 | 1.0          |
| ISR scale factor on $\alpha_S$ eval. scale | PARP(64)         | 1.0-2.5      | 2.21            | 1.0   | 1.0          |
| Scaling of max. parton virtuality          | PARP(67)         | 0.1-2.0      | 0.66            | 4.0   | 1.0          |
| AOCD for FSR off ISR                       | PARP(72)         | 0.1-0.4      | 0.25            | 0.192 | 0.26         |
| Primordial kT                              | PARP(92)         | 0.8-2.5      | 1.92            | 2.0   | 2.0          |

-

-

| Observable                                                                                     | $\sqrt{s}$ | Weight |  |  |  |
|------------------------------------------------------------------------------------------------|------------|--------|--|--|--|
| Track-based minimum bias at 900 GeV and 7 TeV in ATLAS [17]                                    |            |        |  |  |  |
| $N_{ch}$ , track $p_{\perp} > 2500$ MeV, $N_{ch} \ge 1$                                        | 7 TeV      | 20     |  |  |  |
| $p_{\perp}$ , track $p_{\perp} > 2500$ MeV, $N_{ch} \ge 1$                                     | 7 TeV      | 20     |  |  |  |
| $\eta$ , track $p_{\parallel} > 2500$ MeV, $N_{ch} \ge 1$                                      | 7 TeV      | 20     |  |  |  |
| $\langle p_{\perp} \rangle$ vs. $N_{ch}$ , track $p_{\perp} > 2500$ MeV, $N_{ch} \ge 1$        | 7 TeV      | 20     |  |  |  |
| $N_{\rm ch}$ , track $p_{\perp} > 500$ MeV, $N_{\rm ch} \ge 6$                                 | 7 TeV      | 40     |  |  |  |
| $p_{\parallel}$ , track $p_{\parallel} > 500$ MeV, $N_{ch} \ge 6$                              | 7 TeV      | 40     |  |  |  |
| $\eta$ , track $p_{\perp} > 500$ MeV, $N_{ch} \ge 6$                                           | 7 TeV      | 40     |  |  |  |
| $\langle p_{\perp} \rangle$ vs. $N_{ch}$ , track $p_{\perp} > 500$ MeV, $N_{ch} \ge 6$         | 7 TeV      | 30     |  |  |  |
| $N_{ch}$ , track $p_{\perp} > 100$ MeV, $N_{ch} \ge 20$                                        | 7 TeV      | 10     |  |  |  |
| $p_{\parallel}$ , track $p_{\parallel} > 100$ MeV, $N_{ch} \ge 20$                             | 7 TeV      | 10     |  |  |  |
| $\eta$ , track $p_{\parallel} > 100$ MeV, $N_{ch} \ge 20$                                      | 7 TeV      | 10     |  |  |  |
| $\langle p_{\perp} \rangle$ vs. $N_{ch}$ , track $p_{\perp} > 100$ MeV, $N_{ch} \ge 20$        | 7 TeV      | 10     |  |  |  |
| $N_{ch}$ , track $p > 2500$ MeV, $N_{ch} \ge 1$                                                | 900 GeV    | 10     |  |  |  |
| $p_{\parallel}$ , track $p_{\parallel} > 2500$ MeV, $N_{ch} \ge 1$                             | 900 GeV    | 10     |  |  |  |
| $\eta$ , track $p_{\parallel} > 2500$ MeV, $N_{ch} \ge 1$                                      | 900 GeV    | 10     |  |  |  |
| $\langle p_{\perp} \rangle$ vs. $N_{ch}$ , track $p_{\perp} > 2500$ MeV, $N_{ch} \ge 1$        | 900 GeV    | 10     |  |  |  |
| $N_{ch}$ , track $p_{\perp} > 500$ MeV, $N_{ch} \ge 6$                                         | 900 GeV    | 20     |  |  |  |
| $p_{\perp}$ , track $p_{\perp} > 500$ MeV, $N_{ch} \ge 6$                                      | 900 GeV    | 20     |  |  |  |
| $\eta$ , track $p_{\parallel} > 500$ MeV, $N_{ch} \ge 6$                                       | 900 GeV    | 20     |  |  |  |
| $\langle p_{\perp} \rangle$ vs. $N_{ch}$ , track $p_{\perp} > 500$ MeV, $N_{ch} \ge 6$         | 900 GeV    | 15     |  |  |  |
| $N_{\rm ch}$ , track $p_{\perp} > 100$ MeV, $N_{\rm ch} \ge 20$                                | 900 GeV    | 5      |  |  |  |
| $p_{\parallel}$ , track $p_{\parallel} > 100$ MeV, $N_{ch} \ge 20$                             | 900 GeV    | 5      |  |  |  |
| $\eta$ , track $p_{\parallel} > 100$ MeV, $N_{ch} \ge 20$                                      | 900 GeV    | 5      |  |  |  |
| $\langle p_{\perp} \rangle$ vs. $N_{\rm ch'}$ track $p_{\perp} > 100$ MeV, $N_{\rm ch} \ge 20$ | 900 GeV    | 5      |  |  |  |
| CDF Run II minimum bias [18]                                                                   |            |        |  |  |  |
| $\langle p_{\perp} \rangle$ vs. $N_{\rm ch}$                                                   | 1960 GeV   | 5      |  |  |  |

Table: Observable-weight combinations used for the AMBT2 MPI tuning.

| Observable                                                                                                      | $\sqrt{s}$ | Fit range            | Weight |
|-----------------------------------------------------------------------------------------------------------------|------------|----------------------|--------|
| Track-based underlying event at 900 GeV and 7 TeV in ATLAS [19]                                                 |            |                      |        |
| Transverse region $N_{chg}$ density vs. $p_{\parallel}$ (leading track)                                         | 7 TeV      | $\geq$ 6 GeV         | 40     |
| Toward region $N_{chg}$ density vs. $p_{\perp}$ (leading track)                                                 | 7 TeV      | $\geq 6 \text{ GeV}$ | 10     |
| Away region $N_{ch\sigma}$ density vs. $p_{\perp}$ (leading track)                                              | 7 TeV      | $\geq$ 6 GeV         | 10     |
| Transverse region $\sum_{i=1}^{n} p_{i+1}$ density vs. $p_{i+1}$ (leading track)                                | 7 TeV      | > 6 GeV              | 40     |
| Toward region $\sum p_{\perp}$ density vs. $p_{\perp}$ (leading track)                                          | 7 TeV      | > 6 GeV              | 10     |
| Away region $\sum p_{\perp}$ density vs. $p_{\perp}$ (leading track)                                            | 7 TeV      | > 6 GeV              | 10     |
| Transverse region $\langle p_{\perp} \rangle$ density vs. $p_{\perp}$ (leading track)                           | 7 TeV      |                      | 40     |
| Toward region $\langle p_{\perp} \rangle$ density vs. $p_{\perp}$ (leading track)                               | 7 TeV      |                      | 10     |
| Away region $\langle p_{\parallel} \rangle$ density vs. $p_{\parallel}$ (leading track)                         | 7 TeV      |                      | 10     |
| Transverse region $\langle p_{\perp} \rangle$ density vs. $N_{ch}$ (leading track)                              | 7 TeV      |                      | 40     |
| Toward region $\langle p_{\perp} \rangle$ density vs. $N_{ch}$ (leading track)                                  | 7 TeV      |                      | 10     |
| Away region $\langle p_{\perp} \rangle$ density vs. $N_{cb}$ (leading track)                                    | 7 TeV      |                      | 10     |
| Transverse region $N_{ch\sigma}$ density vs. $p_{\parallel}$ (leading track), $p_{\parallel} > 100 \text{ MeV}$ | 7 TeV      |                      | 10     |
| Toward region $N_{ch\sigma}$ density vs. $p_{\parallel}$ (leading track), $p_{\parallel} > 100$ MeV             | 7 TeV      |                      | 4      |
| Away region $N_{chg}$ density vs. $p_{\parallel}$ (leading track), $p_{\parallel} > 100 \text{ MeV}$            | 7 TeV      |                      | 4      |
| Transverse region $\sum p_{\perp}$ density vs. $p_{\perp}$ (leading track), $p_{\perp} > 100 \text{ MeV}$       | 7 TeV      |                      | 10     |
| Toward region $\sum p_{\perp}$ density vs. $p_{\perp}$ (leading track), $p_{\perp} \ge 100 \text{ MeV}$         | 7 TeV      |                      | 4      |
| Away region $\sum p_{\perp}$ density vs. $p_{\perp}$ (leading track), $p_{\perp} > 100 \text{ MeV}$             | 7 TeV      |                      | 4      |
| Transverse region $N_{ch\sigma}$ density vs. $p_{\perp}$ (leading track)                                        | 900 GeV    | $\geq$ 3 GeV         | 20     |
| Toward region $N_{ch\sigma}$ density vs. $p_{\parallel}$ (leading track)                                        | 900 GeV    | $\geq$ 3 GeV         | 5      |
| Away region $N_{chg}$ density vs. $p_{\parallel}$ (leading track)                                               | 900 GeV    | $\geq$ 3 GeV         | 5      |
| Transverse region $\sum p_{\perp}$ density vs. $p_{\perp}$ (leading track)                                      | 900 GeV    | > 3 GeV              | 20     |
| Toward region $\sum p_{\perp}$ density vs. $p_{\perp}$ (leading track)                                          | 900 GeV    | > 3 GeV              | 5      |
| Away region $\sum_{p} p_{\perp}$ density vs. $p_{\perp}$ (leading track)                                        | 900 GeV    | > 3 GeV              | 5      |
| Transverse region $\langle p_{\perp} \rangle$ density vs. $p_{\perp}$ (leading track)                           | 900 GeV    |                      | 20     |
| Toward region $\langle p_{\perp} \rangle$ density vs. $p_{\perp}$ (leading track)                               | 900 GeV    |                      | 5      |
| Away region $\langle p_{\perp} \rangle$ density vs. $p_{\perp}$ (leading track)                                 | 900 GeV    |                      | 5      |
| Transverse region $\langle p_{\perp} \rangle$ density vs. $N_{ch}$ (leading track)                              | 900 GeV    |                      | 20     |

| Toward region $\langle p_{\perp} \rangle$ density vs. $N_{\rm ch}$ (leading track)                                    | 900 GeV  |                      | 5  |
|-----------------------------------------------------------------------------------------------------------------------|----------|----------------------|----|
| Away region $\langle p_{\perp} \rangle$ density vs. $N_{ch}$ (leading track)                                          | 900 GeV  |                      | 5  |
| Transverse region $N_{chg}$ density vs. $p_{\perp}$ (leading track), $p_{\perp} > 100 \text{ MeV}$                    | 900 GeV  |                      | 5  |
| Toward region $N_{chg}$ density vs. $p_{\perp}$ (leading track), $p_{\perp} > 100 \text{ MeV}$                        | 900 GeV  |                      | 2  |
| Away region $N_{ m chg}$ density vs. $p_{\perp}$ (leading track), $p_{\perp} > 100~{ m MeV}$                          | 900 GeV  |                      | 2  |
| Transverse region $\sum p_{\parallel}$ density vs. $p_{\parallel}$ (leading track), $p_{\parallel} > 100 \text{ MeV}$ | 900 GeV  |                      | 5  |
| Toward region $\sum p_{\perp}$ density vs. $p_{\perp}$ (leading track), $p_{\perp} > 100$ MeV                         | 900 GeV  |                      | 2  |
| Away region $\sum p_{\perp}$ density vs. $p_{\perp}$ (leading track), $p_{\perp} > 100  { m MeV}$                     | 900 GeV  |                      | 2  |
| Cluster-based underlying event at 900 GeV and 7 TeV in ATLAS [20]                                                     |          |                      |    |
| Transverse N density vs. $p_{\perp}^{clus1}$                                                                          | 7 TeV    |                      | 20 |
| Transverse $\sum p_{\parallel}$ density vs. $p_{\parallel}^{clus1}$                                                   | 7 TeV    |                      | 20 |
| Transverse N density vs. $p_{\perp}^{clus1}$                                                                          | 900 GeV  |                      | 10 |
| Transverse $\sum p_{\perp}$ density vs. $p_{\perp}^{clus1}$                                                           | 900 GeV  |                      | 10 |
| Field & Stuart Run I underlying event analysis [21]                                                                   |          |                      |    |
| N <sub>ch</sub> (toward) for min-bias                                                                                 | 1800 GeV | $\geq 4 \text{ GeV}$ | 3  |
| N <sub>ch</sub> (transverse) for min-bias                                                                             | 1800 GeV | $\geq 4 \text{ GeV}$ | 5  |
| N <sub>ch</sub> (away) for min-bias                                                                                   | 1800 GeV | $\geq 4 \text{ GeV}$ | 3  |
| N <sub>ch</sub> (toward) for JET20                                                                                    | 1800 GeV |                      | 3  |
| N <sub>ch</sub> (transverse) for JET20                                                                                | 1800 GeV |                      | 5  |
| N <sub>ch</sub> (away) for JET20                                                                                      | 1800 GeV |                      | 3  |
| p the (toward) for min-bias                                                                                           | 1800 GeV | $\geq 4 \text{ GeV}$ | 3  |
| $p_{\perp}^{sum}$ (transverse) for min-bias                                                                           | 1800 GeV | $\geq 4 \text{ GeV}$ | 5  |
| $p_{\parallel}^{\text{SUM}}$ (away) for min-bias                                                                      | 1800 GeV | $\geq 4 \text{ GeV}$ | 3  |
| $p_{\perp}^{sum}$ (toward) for JET20                                                                                  | 1800 GeV |                      | 3  |
| $p_{\perp}^{stim}$ (transverse) for JET20                                                                             | 1800 GeV |                      | 5  |
| $p_{\perp}^{\text{stum}}$ (away) for JET20                                                                            | 1800 GeV |                      | 3  |
| $p_{\perp}$ distribution (transverse, $p_{\perp}^{\text{lead}} > 5 \text{ GeV}$ )                                     | 1800 GeV |                      | 3  |
| $p_{\perp}$ distribution (transverse, $p_{\perp}^{\text{lead}} > 30 \text{GeV}$ )                                     | 1800 GeV |                      | 3  |

Transverse cone and 'Swiss cheese' underlying event studies [22]

#### Observable-weight combinations for Pythia6 MPI tuning (UE) III

| Transverse cone $\langle p_{\perp}^{\max} \rangle$ vs. $E_{\perp}^{\text{lead}}$                           | 1800 GeV | 5  |
|------------------------------------------------------------------------------------------------------------|----------|----|
| Transverse cone $N_{\max}$ vs. $E_{\perp}^{\text{lead}}$                                                   | 1800 GeV | 5  |
| Swiss Cheese $p_{\perp}^{sum}$ vs. $E_{\perp}^{lead}$ (2 jets removed)                                     | 1800 GeV | 5  |
| Swiss Cheese $p_{\perp}^{sum}$ vs. $E_{\perp}^{lead}$ (3 jets removed)                                     | 1800 GeV | 5  |
| Transverse cone $\langle p_{\perp}^{max} \rangle$ vs. $E_{\perp}^{lead}$                                   | 630 GeV  | 5  |
| Swiss Cheese $p_{\perp}^{sum}$ vs. $E_{\perp}^{lead}$ (2 jets removed)                                     | 630 GeV  | 5  |
| Swiss Cheese $p_{\perp}^{\overline{\text{sum}}}$ vs. $E_{\perp}^{\overline{\text{lead}}}$ (3 jets removed) | 630 GeV  | 5  |
| CDF Run 2 underlying event in leading jet events [23]                                                      |          |    |
| Transverse region charged particle density                                                                 | 1960 GeV | 20 |
| TransMAX region charged particle density                                                                   | 1960 GeV | 10 |
| TransMIN region charged particle density                                                                   | 1960 GeV | 10 |
| TransDIF region charged particle density                                                                   | 1960 GeV | 2  |
| Transverse region charged $\sum p_{\perp}$ density                                                         | 1960 GeV | 20 |
| TransMAX region charged $\sum p_{\perp}$ density                                                           | 1960 GeV | 10 |
| TransMIN region charged $\sum p_{\perp}$ density                                                           | 1960 GeV | 10 |
| TransDIF region charged $\sum p_{\perp}$ density                                                           | 1960 GeV | 2  |
| Transverse region charged $\langle p_{\perp} \rangle$ density                                              | 1960 GeV | 10 |
| CDF Run 2 underlying event in Drell-Yan [23]                                                               |          |    |
| Toward region charged particle density                                                                     | 1960 GeV | 20 |
| Transverse region charged particle density                                                                 | 1960 GeV | 10 |
| TransMAX region charged particle density                                                                   | 1960 GeV | 5  |
| TransMIN region charged particle density                                                                   | 1960 GeV | 5  |
| Away region charged particle density                                                                       | 1960 GeV | 5  |
| Toward region charged p <sup>sum</sup> density                                                             | 1960 GeV | 20 |
| Transverse region charged $p_{\perp}^{sum}$ density                                                        | 1960 GeV | 10 |
| TransMAX region charged $p_{\perp}^{stm}$ density                                                          | 1960 GeV | 5  |
| TransMIN region charged $p_{\parallel}^{sum}$ density                                                      | 1960 GeV | 5  |
| Away region charged p <sup>sum</sup> density                                                               | 1960 GeV | 5  |
| Toward region charged $p_{\perp}^{max}$ density                                                            | 1960 GeV | 2  |
| Transverse region charged $p_{\perp}^{max}$ density                                                        | 1960 GeV | 2  |

| Away region charged $p_{\perp}^{max}$ density                                     | 1960 GeV | 2  |
|-----------------------------------------------------------------------------------|----------|----|
| Charged $\langle p_{\perp}^{\ell \ell} \rangle$ vs. $N_{ch}$                      | 1960 GeV | 10 |
| Charged $\langle p_{\perp}^{-} \rangle$ vs. $N_{ch}^{ch}$                         | 1960 GeV | 10 |
| Charged $\langle p_{\perp} \rangle$ vs. $N_{ch'} p_{\perp} (Z^0) < 10 \text{GeV}$ | 1960 GeV | 10 |

| Description                                 | PYTHIA Parameter | Tuning range | AMBT2 | AUET2 | AMBT1 | Perugia 2010 |
|---------------------------------------------|------------------|--------------|-------|-------|-------|--------------|
| Fast string CR                              | PARP(77)         | 0.25-1.15    | 0.88  | 1.12  | 1.02  | 1.00         |
| CR strength                                 | PARP(78)         | 0.1-0.6      | 0.18  | 0.33  | 0.54  | 0.35         |
| $p_{\perp}^{0}(\sqrt{s} = 1800 \text{GeV})$ | PARP(82)         | 2.1-2.7      | 2.49  | 2.45  | 2.29  | 2.05         |
| Matter distribution                         | PARP(84)         | 0.0-1.0      | 0.62  | 0.53  | 0.65  | _ a)         |
| $p_{\perp}^0 \sqrt{s}$ evolution exponent   | PARP(90)         | 0.18-0.28    | 0.244 | 0.229 | 0.250 | 0.26         |

a) Perugia 2010 uses a exponential matter distribution which doesn't use this parameter.

- S. Catani, B. R. Webber and G. Marchesini, Nucl. Phys. B 349 (1991) 635.
- K. Ackerstaff et al. [OPAL Collaboration], Eur. Phys. J. C 7 (1999) 369 [arXiv:hep-ex/9807004].
  - C. Amsler et al. [Particle Data Group], Phys. Lett. B 667 (2008) 1.
- R. Barate *et al.* [ALEPH Collaboration], Phys. Rept. **294** (1998) 1.
- A. Heister et al. [ALEPH Collaboration], Eur. Phys. J. C 35 (2004) 457.
- P. Abreu et al. [DELPHI Collaboration], Z. Phys. C 73 (1996) 11.
- G. Barker *et al.* [DELPHI Collaboration], DELPHI-2002-069-CONF-603.
- P. Pfeifenschneider *et al.* [JADE collaboration and OPAL Collaboration], Eur. Phys. J. C **17** (2000) 19 [arXiv:hep-ex/0001055].
  - G. Aad *et al.* [Atlas Collaboration], arXiv:1101.0070 [hep-ex].
  - J. B. G. da Costa et al. [ATLAS Collaboration], arXiv:1102.2696 [hep-ex].
- S. Zenz [ATLAS Collaboration], ATL-PHYS-PROC-2010-135.
- G. Aad et al. [ATLAS Collaboration], ATLAS-CONF-2010-049.



- A. A. Affolder et al. [CDF Collaboration], Phys. Rev. Lett. 84 (2000) 845 [arXiv:hep-ex/0001021].
- D. E. Acosta *et al.* [CDF Collaboration], Phys. Rev. D 71 (2005) 112002 [arXiv:hep-ex/0505013].



- V. M. Abazov *et al.* [D0 Collaboration], Phys. Rev. Lett. **94** (2005) 221801 [arXiv:hep-ex/0409040].
- G. Aad et al. [ATLAS Collaboration], arXiv:1012.5104 [hep-ex].
- T. Aaltonen *et al.* [CDF Collaboration], Phys. Rev. D **79** (2009) 112005 [Erratum-ibid. D **82** (2010) 119903] [arXiv:0904.1098 [hep-ex]].
- G. Aad et al. [Atlas Collaboration], arXiv:1012.0791 [hep-ex].
- G. Aad *et al.* [ATLAS Collaboration], arXiv:1103.1816 [hep-ex].
- A. A. Affolder et al. [CDF Collaboration], Phys. Rev. D 65 (2002) 092002.
- D. E. Acosta *et al.* [CDF Collaboration], Phys. Rev. D 70 (2004) 072002 [arXiv:hep-ex/0404004].
- T. Aaltonen *et al.* [The CDF Collaboration], Phys. Rev. D 82 (2010) 034001 [arXiv:1003.3146 [Unknown]].