Searches for 4th generation quarks with the ATLAS detector

Rocco Mandrysch

Humboldt-University of Berlin (On behalf of the ATLAS Collaboration)

Phenomenology 2011 Symposium

09th - 11th May 2011

Contents

- Introduction
- Search strategy
- 3 Physical object/event selection
- Results
- Summary

Present situation

- Number of families not fixed by Standard Model
- $N_{
 u}=3$ with $m_{
 u} < m_{Z}/2$ (LEP) $\Rightarrow m_{
 u_4} > m_{Z}/2$
- 4th generation not excluded by EW precision measurements

Motivation

- Important role in EW symmetry breaking
- Contributions to oblique EW corrections: Higher Higgs mass possible

Mass limits for 4th generation particles

- Mass limits depend on CKM elements and mass of other heavy quark
- Current mass limits on short-lived particles @ 95% CL: (assuming 100% BF in search channel)

Particle	Signature	m _{min} [GeV]	Experiment
ℓ_4	$\ell_4 \rightarrow \nu + W$	100	L3 (PRL B 517, 75 (2001))
$ u_{4}$ (Dirac)	$ u_4 ightarrow \ell + W$	90.3	L3 (PRL B 517, 75 (2001))
ν_4 (Majorana)	$ u_4 ightarrow \ell + W$	80.5	L3 (PRL B 517, 75 (2001))
t'	t' o qW	335	CDF (CDF note 10110)
b'	b' o t W	372	CDF (Phys.Rev.Lett.106:141803)

- If tiny mixing angles between 4th and other families and $|m_{t'} - m_{b'}|$ small
 - → particles could have long lifetime and escape detection (Hung et al, Phys.Rev.D77:037302,2008)

4th generation quark pair production cross sections

 M. Aliev, H. Lacker, U. Langenfeld, S.Moch and P. Uwer HATHOR - HAdronic Top and Heavy quarks crOss section calculatoR Comput. Phys. Commun. 182:1034-1046, 2011

- Analysis based on ATLAS-CONF-2011-022
- Search signature: $I^+I^- + 2iets$

$\sigma[pb]$	Process	$\sigma[pb]$
80.2	$Z \rightarrow \mu\mu$	846
21.5	Z ightarrow au au	845
1.4	WW	11.5
14.6	WZ	3.5
850	ZZ	1.0
	80.2 21.5 1.4 14.6	$\begin{array}{c cccc} 80.2 & Z \rightarrow \mu\mu \\ 21.5 & Z \rightarrow \tau\tau \\ 1.4 & \text{WW} \\ 14.6 & \text{WZ} \end{array}$

• Use multistage trigger system to select interesting events

Electron selection

- ECAL cluster based algorithm
- Tight electron selection criteria
- $E_T > 20 \,\text{GeV}$, $|\eta_{cluster}| < 2.47$

• Isolated: $E_T^{\Delta R < 0.2} < 4 \,\mathrm{GeV}$

$$\eta = -\ln\left[an\left(heta/2
ight)
ight]$$
 $\Delta R = \sqrt{\Delta\eta^2 + \Delta\phi^2}$

Semiconductor tracker

Muon selection

- Combined muon algorithm
- Tight muon selection criteria
- $P_T > 20 \,\mathrm{GeV}$, $|\eta| < 2.5$
- Isolated: $E_{\tau}^{\Delta R < 0.3} < 4 \,\mathrm{GeV}$, $P_{\tau}^{\Delta R < 0.3} < 4 \,\mathrm{GeV}$
- Removing μ overlapping with jets in $\Delta R < 0.3$

Muon chambers

cosmic muons rejection

Toroid magnets

Jet selection

- AntiKt 0.4 jets
- $P_T > 20 \,\mathrm{GeV}$, $|\eta| < 2.5$
- Overlap removal with electrons within $\Delta R < 0.2$

Muon chambers

Transition radiation tracker

Solenoid magnet

Basic selection

- Exactly two leptons (e or μ) of opposite charge (one of which fire an electron or muon trigger)
- One reconstructed primary vertex

Reducing $Z \rightarrow II + jets$ background

- At least two jets
- e^+e^- and $\mu^+\mu^-$ events must satisfy:
 - missing transverse energy: $\not\!\!E_T > 40\,{\rm GeV}$
 - $m_{e^+e^-,\mu^+\mu^-} < 81 \,\mathrm{GeV}$ or $101 \,\mathrm{GeV} < m_{e^+e^-,\mu^+\mu^-}$

Reducing $t\bar{t}$ background

- ullet Perform pprox mass reconstruction of heavy quark: $M_{Collinear}$
- Neutrinos escape detector
 - \rightarrow Complete mass reconstruction impossible
- ullet Feature of heavy quarks: large $ec{p}$ of W^\pm daughters
 - \rightarrow often \approx collinear decay products
- Assume: two neutrinos sole contributors to \(\mathbb{E}_T\) and ≈ collinear with leptons

Reduce $t\bar{t}$ background

signal: $m_{Q_4} = 350 \,\mathrm{GeV}$

- $H_T = \Sigma E_T^{jet,lepton} + \not\!\!E_T$
- Remove background by 2D-cut in $H_T M_{Colinear}$ plane depend on M_{Q_4} mass

• After final selection in data with $\mathcal{L} = 37 \, \mathrm{pb}^{-1}$ (ee, $\mu\mu$ and $e\mu$ channel combined)

Q ₄ Mass [GeV]	250	300
Total BG	$40.4 \pm 0.7 \pm 3.9$	$16.8\pm0.5\pm1.7$
Signal	$20.7\pm0.5\pm1.9$	$7.1\pm0.2\pm0.3$
Observed	40	11
Q ₄ Mass [GeV]	350	400
Total BG	$10.1\pm0.4\pm0.1$	$6.3\pm0.4\pm0.8$
Signal	$3.0\pm0.1\pm0.2$	$1.4\pm0.1\pm0.1$
Observed	8	5

- Sum of ee, $\mu\mu$, and $e\mu$ channels after all cuts
- Use a binned maximum likelihood technique to measure the cross section with $M_{Collinear}$ for $m_{Q_4} = 250\,{\rm GeV}, 300\,{\rm GeV}, 350\,{\rm GeV}, 400\,{\rm GeV}$

- Neymann construction with Feldman and Cousins to build a confidence band
- $m_{Q_4} > 270 \,\mathrm{GeV}$ @ 95% confidence level

Summary

- Production cross section @ LHC $\gtrsim 10 \times$ higher than at Tevatron \rightarrow first searches small lumi ($\mathcal{L}=37\,\mathrm{pb^{-1}}$) possible
- First analysis with dilepton + jets search signature: $Q_4 \bar{Q}_4 \rightarrow W^+ q W^- \bar{q} \rightarrow q \bar{q} (I^+ \nu) (I^- \nu)$
- Observed lower mass limit: $m_{Q_4}>270\,{\rm GeV}$ @ $95\,\%$ confidence level (not yet competitive with Tevatron, will change with 2011 data with $\mathcal{L}=267\,{\rm pb}^{-1}$)
- Currently analyses with refined but also different strategies in progress for 7 TeV

Backup slides

EW precision fit

 Graham D. Kribs, Tilman Plehn, Michael Spannowsky and Tim M. P. Tait Four generations and Higgs physics Phys. Rev. D, 76(7):075016, Oct 2007

STU Formalism

- S: sensitive to chirally coupling fermion $\iff W^{\pm}, Z$ and H self energy diagrams
- ullet T: sensitive to mass splitting $\Longleftrightarrow W^\pm$ and H self energy diagrams

Mass splitting within a 4th Generation

Contributions to S and T:

(Kribs, Plehn, Spannowsky & Tait, Phys.Rev.D76, 075016, 2007)

Additional one loop diagram with 4th gen. particles

$$\bullet \ \Delta \mathcal{S} \propto \left(1 + \ln \frac{m_{\ell_4}^2}{m_{\nu_4}^2}\right) + \mathcal{N}_C \left(1 - \frac{1}{3} \ln \frac{m_{u_4}^2}{m_{d_4}^2}\right)$$

$$ullet$$
 $\Delta T \propto \left(N_C |m_{u_4}^2 - m_{d_4}^2|^2 + |m_{\ell_4}^2 - m_{
u_4}^2|^2
ight)$

• N_C : color factor

Systematic uncertainties

Systematic uncertainties for background and $350\,\mathrm{GeV}$ signal

Source	Effect	Size[%]
Electron and trigger reconstruction	Yield	1.6%
Electron ID	Yield	2-9%
Muon ID and reconstruction	Yield	0.3%
Muon trigger	Yield	0.1 - 1.3%
Electron energy scale	Shape	0.6%
Muon momentum scale	Shape	0.1 %
Jet energy scale	Shape and Yield	12%
Gluon radiation	Shape and Yield	15%
Signal cross section	Yield	14%
Background cross section	Yield	5 - 30%
Fake lepton background	Shape and Yield	50 %
Luminosity	Yield	11 %

Reduce $t\bar{t}$ background

_		
	Q ₄ Mass (GeV)	Final selection
	250	$H_T > 500 - 0.7 imes M_{Collinear}$
	300	$H_T > 600 - 0.5 \times M_{Collinear}$
	350	$H_T > 600 - 0.2 imes M_{Collinear}$
_	400	$H_T > 700 - 0.3 imes M_{Collinear}$

New limit on quark mass

- ullet Sum of ee, $\mu\mu$, and $e\mu$ channels after all cuts
- Use a binned maximal likelihood technique to measure the cross section with $M_{Collinear}$ for $m_{Q_4} = 250 \, {\rm GeV}, 300 \, {\rm GeV}, 350 \, {\rm GeV}, 400 \, {\rm GeV}$

Calculation of M_{Collinear}

- Setup neutrino four momentum vector via $\not\!\!E_T$ and η^{lepton}
- Combining the neutrinos, leptons, and jets to calculate the two $M_{Collinear}$ objects in the event
- Check all jet combinations and minimize the difference between the two calculated $M_{Collinear}$ values
- Require: not using the same jet for both calculations
- Perform all of the above calculations for a series of $(\Delta \eta, \Delta \phi)$ points around each lepton and recalculate $|(M^1_{Collinear} M^2_{Collinear})|$ for each value for $\Delta \eta$ and $\Delta \phi$
- Calculate values for both neutrinos at the same time

CKM^{4×4} matrix

$$|V_{\mathit{CKM}}^{4\times4}| = \begin{pmatrix} 0.97414_{-0.00023}^{+0.00023} & 0.2245_{-0.0012}^{+0.0012} & (4.200_{-0.910}^{+0.090}) \cdot 10^{-3} & 0.025_{-0.025}^{+0.011} \\ 0.2256_{-0.0059}^{+0.0011} & 0.9717_{-0.0105}^{+0.0024} & (41.09_{-0.45}^{+0.45}) \cdot 10^{-3} & 0.057_{-0.057}^{+0.097} \\ 0.001_{-0.001}^{+0.035} & 0.062_{-0.062}^{+0.044} & 0.910_{-0.080}^{+0.079} & 0.41_{-0.27}^{+0.15} \\ 0.013_{-0.013}^{+0.039} & 0.04_{-0.04}^{+0.12} & 0.41_{-0.27}^{+0.144} & 0.910_{-0.083}^{+0.078} \end{pmatrix}$$