Search for 1st and 2nd generation leptoquarks in ATLAS

Jahred Adelman on behalf of the ATLAS collaboration

http://arxiv.org/abs/1104.4481

PHENO 2011 May 9

Why leptoquarks?

- Coupling only within a generation assumed
- Pair production xsection
 ~1 pb at LQ mass = 300 GeV
 β = branching fraction to
 lq (vs vq)

• Inspired by symmetry between lepton and quark generations • Predicted by many **GUT** models • Carry color charge, baryon and lepton quantum numbers • Fractional electric

charge 4 analyses: lljj, lvjj (l = e,µ) Pair production of scalar LQs

ATLAS detector

Object selection

Electrons

- Good EM shower
- Track pointing to EM Cluster
- $E_T > 20$ GeV, |eta| < 2.47 (excluding crack)
- Loose isolation cuts

Jets

- Anti-Kt with R parameter = 0.4
- $P_{\rm T}$ > 20 GeV, |eta| < 2.8
- dR(lepton, jet) > 0.5
- Jet quality cuts

Other

- Reweight #vertex distribution in MC to match data
- Require good quality primary vertex
- MET corrected for muons

Muons

Matched tracks in the inner detector and muon spectrometer with matching p

 $P_{\rm T}$ > 20 GeV, |eta| < 2.4

Loose isolation cuts

Jahred Adelman

Leptoquark searches at ATLAS

LQ phenomenology

- Signature: 2 or more energetic jets (> 30 GeV) and ...
- Dilepton: 2 opposite-sign, same-flavor leptons > 30 GeV or
- Single lepton: 1 lepton > 30 GeV, MET > 25 GeV, $M_T(l,MET) > 40$ GeV

LQ backgrounds

Background	Relative size	Estimation strategy
Top quark pairs	Large	Model with MC, cross-check in control regions
Drell-Yan/Z +jets	Large for dileptons, small for single leptons	Normalize to Z+2jet window, MC to extrapolate to signal region. Check check control regions
W+jets	Large for single leptons. Small for dileptons	Monte Carlo, check in control regions
Single top	Small	Monte Carlo
Diboson	Small	Monte Carlo
Fake leptons	Small	Various data-driven methods
Jahred Adelman		Yale Leptoquark searches at ATLAS

Fakes leptons for single lepton analyses

Single electrons

- Estimated by fitting the M_T distributions to the total simulated background and a QCD enriched sample
- A matrix method is used to remove the shape of the residual real electron contamination
- MET/jet dphi cut removes QCD background

Single muons

D: MET>25 and |d0|<0.1 mm

- A: MET<25 GeV and |d0|<0.1 mm
- B: MET<25 GeV and |do|>0.1 mm

C: MET>25 GeV and |do|>0.1 mm

• Small signal and other background contamination removed with MC

Dileptons

- Fit isolation distributions to templates
- Signal from MC, background from QCD-enriched sample

• Before looking at signal region, define control regions that have minimal signal contamination and enhance the important backgrounds

• Of particular importance - ttbar and V+jets

W+2 jets control region

Single lepton ttbar control region

Jahred Adelman

Z+jets control region

Jahred Adelman

Dilepton ttbar control region

TTbar

njets >=2

2 opposite sign, opposite flavor leptons

- Good agreement in all control regions within uncertainties
 - Fakes and background estimation under control

Control region yields

	eejj		e u j j			
Event	Control	Region	Co	ontrol Region	1	
Source	$Z+ \geq 2$ jets	$t\bar{t}$	W+2 jets	$W+\geq 3$ jet	$tar{t}$	
V+jets	$150~\pm~23$	0.3 ± 0.1	$2100~\pm~700$	$580~\pm~190$	180 ± 60	
Top	$2.0~\pm~0.3$	24 ± 4	$21~\pm~4$	$44~\pm~9$	$210~\pm~40$	
Diboson	$2.0~\pm~0.3$	0.8 ± 0.1	17 ± 4	8.3 ± 1.9	$2.1~\pm~0.5$	
QCD	$4.0 \stackrel{+}{_{-}} \stackrel{14.0}{_{-}}$	$0.0 \ \ {}^+ \ \ {}^{0.1}_{0.0}$	$64~\pm~14$	$68~\pm~15$	$29~\pm~7$	
Total Bkg	$158~\pm~25$	25 ± 4	$2200~\pm~700$	$700~\pm~200$	$420~\pm~80$	
Data	140	22	2344	722	425	

	$\mu\mu jj$		$\mu u j j$			
Event	Control	Region	Control Region			
Source	$Z+ \ge 2$ jets	$tar{t}$	W+2 jets	$W+ \geq 3$ jet	$tar{t}$	
V+jets	190 ± 24	0.3 ± 0.1	$3300~\pm~1100$	900 ± 300	250 ± 80	
Top	$2.7~\pm~0.5$	24 ± 4	14 ± 3	53 ± 1	$260~\pm~50$	
Diboson	$0.2~\pm~0.1$	0.8 ± 0.1	$28~\pm~6$	14 ± 3	$3.0~\pm~0.7$	
QCD	$6.0 \begin{array}{c} + & 11.0 \\ - & 6.0 \end{array}$	$0.0 \ \ {}^{+}_{-} \ \ {}^{0.1}_{0.0}$	$300~\pm~100$	$130~\pm~50$	$54~\pm~32$	
Total Bkg	200 ± 25	25 ± 4	3600 ± 1100	$1100~\pm~330$	570 ± 120	
Data	216	22	3588	1120	547	

Data-assisted method: Scale the number of expected events in signal region in MC using the number of Z events in data

$$N_D^{\rm sig} = \frac{N_D^{\rm Z}}{N_{MC}^{\rm Z}} N_{MC}^{\rm sig}$$

Do for different dilepton mass windows, different generators, and with and without njet cuts

Random Grid Search (RGS) optimization

- Optimize cuts to give highest signal significance
- Random Grid Search
 - Grid is set of signal events
 - Significance is the Poisson probability that the background fluctuates to signal + background
- No shapes taken into account for optimization
 - But shapes used for limit setting (binned CLs method)

Results of RGS optimization

$eejj$ and $\mu\mu jj$	e u jj	$\mu u j j$
$M_{ll} > 120 { m ~GeV}$	$M_{\rm T} > 200 { m ~GeV}$	$M_{\rm T} > 160 { m ~GeV}$
$\overline{M_{\rm LQ}} > 150 {\rm ~GeV}$	$M_{\rm LQ} > 180~{ m GeV}$	$M_{\rm LQ} > 150 { m ~GeV}$
$p_{\mathrm{T}}^{\mathrm{all}} > 30 \ \mathrm{GeV}$	$M_{\rm LQ}^{\rm T} > 180~{ m GeV}$	$M_{\rm LQ}^{\rm T} > 150 { m ~GeV}$
$S_{\mathrm{T}}^{\ell} > 450 \ \mathrm{GeV}$	$S_{\rm T}^{\nu} > 410 { m ~GeV}$	$S_{\rm T}^{\nu} > 400 { m ~GeV}$

* = Dielectron ** = Dimuon

	V+jets		Top		Diboson		LQ (300 GeV)	
Channel	lljj	l u j j	lljj	$l\nu jj$	lljj	l u j j	lljj	$l\nu jj$
Production Cross Section		4	13	13	5	5	18	18
Modeling	$34^*, 45^{**}$	40	35	35		_	—	
Electron Energy Scale & Resolution [*]	+13, -0.2	5	10	2	7	1	8	1
Muon Momentum Scale & Resolution**	20	5	7	2	8	1	6.7	1
Jet Energy Scale	6	+22, -13	+9, -18	32	+16, -6	+17, -24	2	3
Jet Energy Resolution	16	10	0.3	26	4	14	0.3	3
Luminosity	0.3	11	11	11	11	11	11	11
Pile up	< 0.1	5	< 0.1	4	< 0.1	6	< 0.1	2
Total Systematics	39*	+49, -45	47*	57	(+22, -16)	+26,-31	22	22
	52**		(+49 -44)**					

- Large systematics but analyses still statistically limited
 - Dominated by modeling uncertainties on backgrounds and jet energy resolution and scale

Source	eejj	e u jj	$\mu\mu j j$	$\mu u j j$
V+jets	0.50 ± 0.28	$0.65~\pm~0.38$	0.28 ± 0.22	$2.6~\pm~1.4$
Top	0.51 ± 0.23	0.67 ± 0.39	0.52 ± 0.23	$1.6~\pm~0.9$
Diboson	0.03 ± 0.01	0.10 ± 0.03	0.04 ± 0.01	$0.10~\pm~0.03$
Other Bkg.	$0.02 \ \ {}^+_{-} \ \ {}^{0.03}_{0.02}$	$0.06~\pm~0.01$	$0.00 \stackrel{+}{_{-}} \stackrel{0.01}{_{-}}$	$0.0~\pm~0.0$
Total Bkg	1.1 ± 0.4	1.4 ± 0.5	0.8 ± 0.3	4.4 ± 1.9
Data	2	2	0	4
LQ(250 GeV)	38 ± 8	9.6 ± 2.1	45 ± 10	13 ± 3
LQ(300 GeV)	17 ± 4	5.1 ± 1.1	$21~\pm~5$	6.4 ± 1.4
LQ(350 GeV)	7.7 ± 1.7	2.6 ± 0.6	9.4 ± 2.1	$3.0~\pm~0.7$
LQ(400 GeV)	$3.5~\pm~0.8$	_	4.4 ± 1.0	

Variables used to set limits

Yale

Leptoquark searches at ATLAS

Kinematics of signal region data

Limits

Jahred Adelman

Yale

Leptoquark searches at ATLAS

Combined limits

Extended the search beyond the Tevatron, and world's best limits for 2nd generation LQs

- World's best limits on pair production of scalar leptoquarks over much of the phase space
- Summer plans add lots more LHC data!
 - Cut harder on kinematic distributions to study heavier LQ masses

Type (β)	Expected limit (GeV)	Observed limit (GeV)
1st generation (1.0)	387	376
1st generation (0.5)	348	319
2nd generation (1.0)	393	422
2nd generation (0.5)	353	362

Backup

Jahred Adelman

$\Delta \phi$ (jet,MET) >1.5×(1-MET/45), where ϕ is in radians and MET is in GeV

Channel	Predicted Yield	Observed Yield
eejj	$610{\pm}240$	626
$e \nu j j$	6100^{+1000}_{-1100}	6088
$\mu\mu jj$	830^{+200}_{-150}	853
$\mu u jj$	$9500{\pm}2500$	9248

Current LQ limits

Tevatron limits from Dzero, $\beta = 1,95\%$ CL limits: 1st generation: 299 GeV 2nd generation: 316 GeV

CMS sets stronger limits!

