Bounds and LHC Implications for R-Parity Violation

Based on work with Tao Han

Jared Schmitthenner

University of Wisconsin, Madison

May 10, 2011

イロト イヨト イヨト イヨト

Outline

Introduction Bounds on Couplings LHC Signals Conclusion

1 Introduction

- R-parity
- R-parity Violation
- 2 Bounds on Couplings
 - Low-energy effects
 - Numerical Technique

3 LHC Signals• Resonances

4 Conclusion

R-parity R-parity Violation

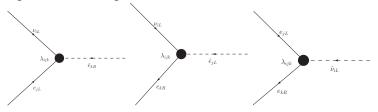
R-parity

- In the Standard model, $L = n_l n_{\bar{l}}$ and $B = \frac{1}{3}(n_q n_{\bar{q}})$ are naturally conserved
- Supersymmetry adds new bosons that carry B and L
- We need a new discrete symmetry, $R = (-1)^{2S+3B+L} = (-1)^{2S+3(B-L)}$
- R=1 for all SM particles and R=-1 for superpartners
- R-parity forbids direct interaction between SM particles and odd numbers of sparticles are forbidden

イロト イポト イヨト イヨト

R-parity R-parity Violation

R-parity Violation


- When supersymmetric particles are included, it is possible to write renormalizeable terms that violate R-parity
- We have the R-violating superpotential $W_{RPV} = \frac{1}{2}\lambda_{ijk}L_iL_jE_k^c + \lambda'_{ijk}L_iQ_jD_k^c + \frac{1}{2}\lambda''_{ijk}U_i^cD_i^cD_k^c$
- The terms proportional to λ and λ' violate L while those proportional to λ'' violate B
- From gauge invariance, $\lambda_{ijk} = -\lambda_{jik}$, $\lambda''_{ijk} = -\lambda''_{ikj}$
- Total of 45 independent parameters

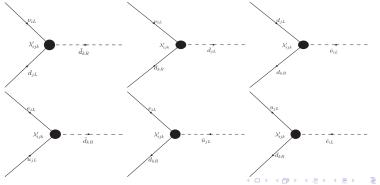
イロト イポト イヨト イヨト

R-parity R-parity Violation

R-parity-vioatling Interactions

- These parameters allow couplings between SM fermions and sfermions
- R-parity violation opens a rich new phenomenology at both high and low energies

→ ∃ →

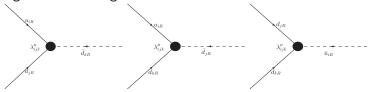

- (E

< 🗇 🕨

R-parity R-parity Violation

R-parity-vioatling Interactions

- These parameters represent direct couplings between SM fermions and sfermions
- R-parity violation opens a rich new phenomenology at both high and low energies



Jared Schmitthenner Bounds and LHC Implications for R-Parity Violation

R-parity R-parity Violation

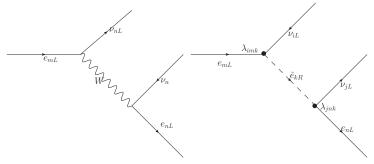
R-parity-vioatling Interactions

- These parameters represent direct couplings between SM fermions and sfermions
- R-parity violation opens a rich new phenomenology at both high and low energies

- 4 周 ト - 4 日 ト - 4 日 ト

Low-energy effects Numerical Technique

Low-energy Effects


- At low energies, new interactions can be seen through virtual sparticles in intermediate states
- These new interactions contribute additional contributions to SM processes that can be used to set bounds on the strengths of couplings
- Limits on λ , λ' , λ'' can be derived from existing measurements

(ロ) (同) (E) (E) (E)

Low-energy effects Numerical Technique

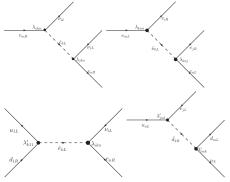
Example: Lepton Universality

• We have a new contribution to leptonic decays $e_m \rightarrow e_n \nu \nu$ through a virtual \tilde{e}

イロト イヨト イヨト イヨト

Low-energy effects Numerical Technique

Lepton Universality

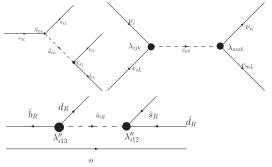

- This alters the expected decay ratios $R_{\tau\mu} = \frac{\Gamma(\tau \to \mu \bar{\nu} \nu)}{\Gamma(\mu \to e \bar{\nu} \nu)} = R_{\tau\mu}^{SM} \frac{(1 + \sum \frac{\sqrt{2}|\lambda_{3ik} \lambda_{2jk}|}{8G_F m_{e_{kR}}^2})^2}{(1 + \sum \frac{\sqrt{2}|\lambda_{3ik} \lambda_{1jk}|}{8G_F m_{e_{kR}}^2})^2}$ $R_{\tau} = \frac{\Gamma(\tau \to \mu \bar{\nu} \nu)}{\Gamma(\tau \to e \bar{\nu} \nu)} = R_{\tau}^{SM} \frac{(1 + \sum \frac{\sqrt{2}|\lambda_{3ik} \lambda_{2jk}|}{8G_F m_{e_{kR}}^2})^2}{(1 + \sum \frac{\sqrt{2}|\lambda_{3ik} \lambda_{1jk}|}{8G_F m_{l_{kR}}^2})^2}$
- Both additive and canceling effects are observed from different couplings

イロト イヨト イヨト イヨト

Low-energy effects Numerical Technique

Other Processes

- Many other processes result from allowing R-parity violation
- Right-handed lepton decay, $I^- \rightarrow I^- I^- I^+$ decays, pion decays, quark flavor changing...

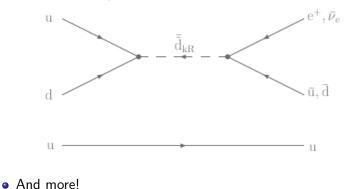


- 4 周 ト - 4 日 ト - 4 日 ト

Low-energy effects Numerical Technique

Other Processes

- Many other processes result from allowing R-parity violation
- semilepton τ decays, neutrino-electron scattering, B decays...


- 4 回 2 - 4 回 2 - 4 回 2

æ

Low-energy effects Numerical Technique

Other Processes

- Many other processes result from allowing R-parity violation
- Proton decay :(

<ロ> (日) (日) (日) (日) (日)

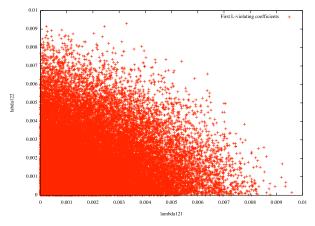
Low-energy effects Numerical Technique

Numerical Technique

- Analytic bounds on individual couplings can be computed only if we assume single coupling dominance - not theoretically well-motivated
- Using numerical methods we can set bounds on all couplings (from many different experiments) simultaneously
- Use a Monte Carlo technique to test points from the full 45-dimensional parameter space, keeping only parameter sets that do not violate experimental constraints
- We can see relationships between all sets of parameters

イロト イポト イヨト イヨト

Low-energy effects Numerical Technique


Bounds

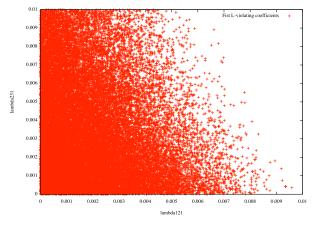
- Since bounds on any individual coupling can depend on any or all of the others, we give bounds as slices of the full parameter space
- Some examples...

イロト イヨト イヨト イヨト

Low-energy effects Numerical Technique

Bounds

 λ_{121} v λ_{122} (related though right-handed decays, $R_{\tau\mu}$ and $\mu \rightarrow 3e$)


Jared Schmitthenner Bounds and LHC Implications for R-Parity Violation

イロト イヨト イヨト イヨト

æ

Low-energy effects Numerical Technique

Bounds

 λ_{121} v. λ_{231} (related through $R_{\tau\mu}$ and $\tau \rightarrow 3e$)

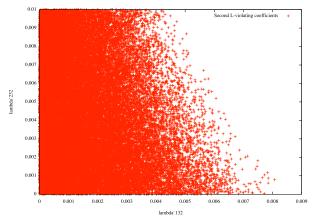

Jared Schmitthenner Bounds and LHC Implications for R-Parity Violation

イロト イヨト イヨト イヨト

æ

Low-energy effects Numerical Technique

Bounds

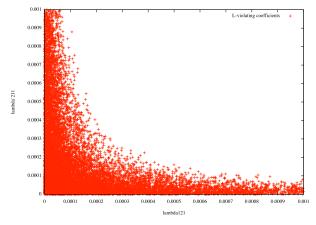

 λ'_{131} v. λ'_{132} (related through $D \rightarrow I$ decays, neutrino-nucleon scattering , quark flavor changing)

Jared Schmitthenner

Bounds and LHC Implications for R-Parity Violation

Low-energy effects Numerical Technique

Bounds


 λ'_{132} v. λ'_{232} (related through $K\to\pi$ decays, neutrino-nucleon scattering)

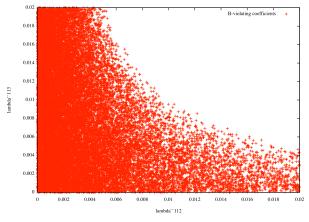
Jared Schmitthenner Bounds and LHC Implications for R-Parity Violation

æ

Low-energy effects Numerical Technique

Bounds

 λ_{121} v. λ'_{111} (related through quark flavor changing, pion decays)


Jared Schmitthenner Bounds and LHC Implications for R-Parity Violation

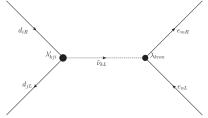
イロン 不同と 不同と 不同と

Э

Low-energy effects Numerical Technique

Bounds

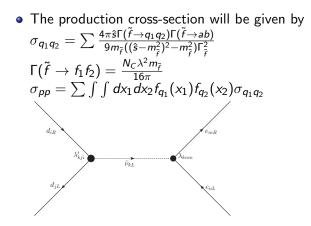
 λ_{112}'' v. λ_{113}'' (related through $B
ightarrow \pi K$ decay)


イロン イヨン イヨン イヨン

Э

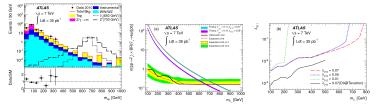
Resonances

Single Sparticle Production


- R-parity violation allows a single sfermion to be produced from two SM Fermions
- These sfermions can then decay via R-parity violating interactions into 2 final-state fermions

向下 イヨト イヨト

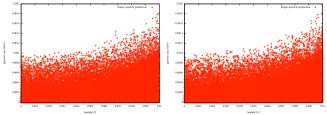
Resonances


Single Sparticle Production

Resonances

Bounds from Single Sparticle Resonances

- These new processes should have a distinctive signature with a peak at the superpartner mass
- As we obtain new data from the LHC, we can update our bounds from high-energy process
- Example: recent ATLAS paper on $e\mu$ production (1103.5559)


• Bounds continue to be updated as new results come in...

イロト イヨト イヨト イヨト

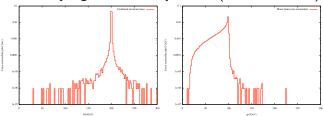
Resonances

Bounds from Single Sparticle Resonances

• ... but this numerical technique already gives a stronger constraint on the $\lambda\lambda'$ couplings

Resonances

Resonant Sparticle Production


- But we can use our limits to predict new signals
- Examination of these signals is in progress....

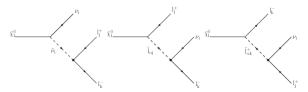
イロト イヨト イヨト イヨト

Resonances

Resonant Sparticle Production

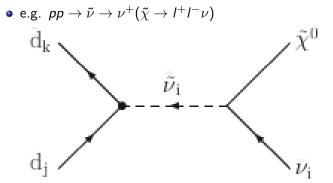
- But we can use our limits to predict new signals
- Examination of these signals is in progress....
- Preliminary signal with a toy model ($m_{\tilde{\nu}} = 200 \text{ GeV}$):

- R-parity violation introduces 45 new parameters and a large number of new physical processes
- With numerical testing, we can place bounds on all couplings from all possible tests simultaneously
- These bounds can be applied to predict possible new signals at the LHC
- We have many possible interesting effects and new signals to look for
- Thank You!


イロン イヨン イヨン イヨン

(ロ) (四) (注) (注) (注) [

Decay Chains


- SUSY with R-parity Violation allows the LSP to decay into SM particles
- This model lacks the large missing energy signals that characterize most SUSY models
- Instead we have decay chains to the LSP, which then decays via RPV couplings, e.g. $\tilde{\chi} \to l^+ l^- \nu$

・ 同 ト ・ ヨ ト ・ ヨ ト

Single Sparticle Signals

 Instead of an immediate R-parity violating decay, singly produced sparticles can initially decay through standard SUSY interactions

イロト イポト イヨト イヨト

Sparticle Pair Production

- We still have standard pair production of sparticles in the MSSM
- These particles will eventually decay to a SM state
- We have many possible final states from RPV decays -4/2 ν , $l\nu$ 4j, 2/4j, 2 ν 4j, 6j
- Many different signals are possible if all couplings are allowed
 examining these signals is a future goal

イロト イポト イヨト イヨト