

Based on work with Wei Xue and Jim Cline arXiv:1001.5399 arXiv:1009.5383

Cosmic Ray Anomalies, Gamma Ray Constraints and Subhalos in Models of Dark Matter Annihilation

Aaron C. Vincent McGill University

Motivation

- Cosmic ray "anomalies":
 - PAMELA positron fraction

ATIC Fermi electron + positron data

Dark matter annihilation

- These phenomena have no known astrophysical origin (could be pulsars?)
- Most promising scenario: a M = I TeV WIMP, annihilating to electrons and positrons via some intermediate gauge boson ϕ lighter than $2m_{proton}$ (Investigated by many authors). Requires some boost factor BF:

 $<\sigma v > = BF \times 3 \times 10^{-26} \text{ cm}^3 \text{s}^{-1}$

Two issues:

- This assumes a smooth central halo. What about substructure?
- Where there are high energy electrons, there are gamma rays. These are particularly troublesome in the GC. Can we lower their flux?

Why substructure is interesting

- Numerical simulations of DM universally predict a large number of local overdensities within the main dark matter halo, extending far beyond the baryonic component of the galaxy.
- These subhalos can augment dark matter annihilation into leptons in two ways:
 - I. Larger local density
 - II. Small velocities mean large boosts in Sommerfeld-enhanced models.
- Other studies: subhalos as a source of gamma rays (to constrain models), but not necessarily as sources for the PAMELA and Fermi leptons themselves.

GALPROP and Via Lactea II

- The diffusion eq. for e+e- was solved numerically using the public GALPROP (Strong & Moskalenko, some mods from I. Cholis & ourselves)
- Source Terms

Main Halo:

$$\rho_{\rm Ein}(r) = \rho_s \exp\left\{-\frac{2}{\alpha}\left[\left(\frac{r}{r_s}\right)^{\alpha} - 1\right]\right\}$$

- Subhalos: Used results from the Via Lactea II N-body simulation (about 20 000 "typical subhalos")
- By adding a contribution from the large amount of substructure, can we get a better fit to the data while reducing the gamma ray constraints from the galactic center?
- Yes we can!

Numerical results 1: Adding subhalos means a better fit to the data

Better fit to PAMELA and Fermi with 2.2 TeV WIMP when subhalos are included Larger mass is because of larger propagation distance – energy loss to Inverse Compton scattering with CMB, IR and Starlight

(4e final state. Going to a larger gauge boson mass allows mu and pi production, but results are ostensibly the same)

Gamma Rays

Best DM annihilation models predict much larger gamma ray fluxes near the galactic center (GC) from <u>Final-state radiation</u> (Bremsstrahlung) <u>and</u> <u>Inverse Compton Scattering</u> (ICS)

Fermi Large Area Telescope measured gamma rays from the entire sky in the exact range we're interested in (10-300 GeV)

Most constraints come from inverse compton scattering (ICS) here

We used the first year of Fermi LAT diffuse gamma ray (Aug 8 2008 to Aug 25 2009) data available from NASA to constrain the allowable DM annihilation Error estimates are from Porter et al. 2009

Numerical Resuts II: Gamma rays

- Unfortunately adding subhalos and still explaining PAMELA and Fermi only slightly reduces the gamma ray constraints.
- Issue: DM is still in the galactic center, annihilating.

The DM profile (Einasto vs Isothermal, Burkert) and the final state (4e, 4 mu, pi, e) have some impact on this, but not enough

Gamma rays cont.

- We obtained constraints for the MH boost factor in the case of an Einasto DM profile, annihilation to 4e:
 - BF < 25 (35) at I σ (2 σ) for M = 1.0 TeV
 - **•** BF < 42 (52) at I σ (2 σ) for M = 2.2 TeV
- Increasing intermediate gauge boson mass to allow decay to muons & pions:
 - **BF** < 23 (28) at I σ (2 σ) for M = 1.2 TeV
- …and choosing a flatter isothermal DM profile:
 - **•** BF < 62 (72) at I σ (2 σ) for M = 1.2 TeV
- All well short of the required boost factors to explain PAMELA and Fermi electron excesses.

What about local substructure?

- We picked a few subhalos from the Via Lactea II population, and put them between us and the GC (lowest GR constraints)
- If we're within ~ 3 kpc of the subhalo center, but farther away than 3 ~ 20 pc, the PAMELA and Fermi excesses could come from such a subhalo

Possible constraints on this scenario

Fermi dipole anisotropy of e+ + e-

$$\delta = \frac{3D(E)}{c} \frac{|\vec{\nabla}n_e|}{n_e},$$

Bounds from dwarf spheroidals are not very constraining.
Bounds from CMB => ok

Particle Physics Realization

- Consider a DM particle χ with a U(I) coupling to a dark gauge boson of mass μ
- This gives rise to an attractive Yukawa interaction (aka Sommerfeld Enhancement) which grows with decreasing relative velocity. Can approximately write:

$$S = \frac{\pi}{\epsilon_v} \frac{\sinh X}{\cosh X - \cos \sqrt{\frac{2\pi}{\bar{\epsilon}_\phi} - X^2}} \qquad \begin{aligned} \epsilon_v &= v/(\alpha_g c) \\ \epsilon_\phi &= \mu/(\alpha_g M) \\ X &= \epsilon_v/\bar{\epsilon}_\phi \end{aligned}$$

• Using realistic velocity distributions and correct α_g this typically predicts too much enhancement! Gamma ray constraints are immediately saturated.

Particle physics, cont'

- Solution: only a fraction 1/f contributes to the enhanced annihilation with $f \sim 50-500$
- In this way, relic density is correct, gamma ray constraints are respected, and PAMELA and Fermi anomalies can be addressed:

Conclusion

- Substructure is an interesting place to look for constraints on annihilating DM models
- We can't solve the gamma ray problem with a heavier WIMP annihilating in faraway subhalos, but a close subhalo may be the key
- Caveat: need large, dense subhalos: these should be rare around our location in the Milky Way.
- A realistic U(I) model typically produces too much Sommerfeld enhancement. This can be solved if only part of the DM can annihilate to the Standard Model through this channel.

II. Subhalos: how CRs get from there to here

Diffusion equation:

 $\frac{\mathrm{d}}{\mathrm{d}t}\psi_{e^{\pm}}(\mathbf{x},\mathbf{p},t) = Q_{e^{\pm}}(\mathbf{x},E) + \nabla \cdot (D(E)\nabla\psi_{e^{\pm}}(\mathbf{x},\mathbf{p},t)) + \frac{\partial}{\partial E}[b(\mathbf{x},E)\psi_{\pm}(\mathbf{x},\mathbf{p},t)]$

Source term (particle physics of the DM model)

$$Q_{e^{\pm}} = \frac{1}{2} \left(\frac{\rho(\mathbf{x})}{M} \right)^2 \langle \sigma v \rangle \frac{\mathrm{d}N_{e^{\pm}}}{\mathrm{d}E} = \frac{n_{DM}^2}{2} BF \langle \sigma v \rangle_0 \frac{\mathrm{d}N_{e^{\pm}}}{\mathrm{d}E}$$

 Diffusion coefficient – species do more or less of a random walk. Parameters set by measured B/C, Sub-Fe/Fe

$$D(E) = D_0 \left(\frac{E}{4 \text{ GeV}}\right)^{\delta}$$

Energy-loss term: Inverse Compton Scattering (ICS), and B field

$$b(x,E) = -\frac{\mathrm{d}E_e}{\mathrm{d}t} = \frac{32\pi\alpha_{em}}{3m_e^4} E_e^2 \left[u_B + \sum_{i=1}^3 u_{\gamma i} \cdot R_i(E_e) \right]$$

We used both an unconstrained, freely varying the normalization of the background (consistent with some other authors), as well as a set of diffusion parameters from Simet & Hooper (much better approach), who fit GALPROP predictions to B/C & sub-Fe/Fe abundances

$$D_{0xx} = 6.04 \times 10^{28} \text{ cm}^2 \text{ s}^{-1} (0.19 \text{ kpc}^2/\text{Myr})$$

 $L_{\text{eff}} = 5.0 \text{ kpc}$
 $\delta = 0.41$
 $V_A = 31 \text{ km s}^{-1}$
 $\rho_{\odot} = 0.37 \text{ GeV cm}^{-3}$ (VL2, Catena & Ullio 2009, ...)

IV. Gamma Rays

• Where there are electrons there is **Bremsstrahlung** (final state radiation) ...

$$\frac{\mathrm{d}\Phi_{\mathrm{main}}}{\mathrm{d}E_{\gamma}\mathrm{d}\Omega} = \frac{1}{2} \frac{\langle \sigma v \rangle}{4\pi} r_{\odot} \frac{\rho_{\odot}^2}{m_{\chi}^2} \frac{\mathrm{d}N}{\mathrm{d}E_{\gamma}} \bar{J}_{main} \quad \text{,} \quad \bar{J}_{\mathrm{main}} = \frac{1}{\Delta\Omega} \int_{\Delta\Omega} \mathrm{d}\Omega \int_{\mathrm{l.o.s.}} \frac{\mathrm{d}s}{r_{\odot}} \left(\frac{\rho_{\mathrm{main}}[r(s,\psi)]}{\rho_{\odot}} \right)^2$$
particle astro

YZ ZY

...and Inverse Compton Scattering

Electrons and positrons scatter off radiation from CMB, IR from dust and starlight, producing high-energy gamma rays in the 10-200 GeV range.

 Both of these integrals can be performed numerically along the line of sight for our particular DM model and known radiation distribution, and compared to experimental data.

