Unusual Two Higgs Doublet Model from Warped Space

We-Fu Chang

National Tsing Hua University, Taiwan (with John Ng, and A. Spray, PRD82,115022)

Pheno 2011, May 10, 2011

Plus

We-Fu Chang Unusual Two Higgs Doublet Model from Warped Space

• Randall-Sundrum (PRL83, 3370) can explain the hierarchy between EW and *M*_{planck}

$$EW \sim k e^{-kr_c\pi}, \ kr_c \sim 11.7$$

k: 5D curvature ~ M_{planck} , r_c : radius of extra dimension.

- Two branes are localizes at φ = 0(UV) and φ = π(IR). The elementary Higgs H on the IR brane.
- The hierarchy among fermions is due to the special profile of bulk fermion, without fine tuning in Yukawa couplings.
- All physical quantities in terms of Planck unit

Fermion Masses in RS

٠

• 5D action for fermions (E_a^A : the veilbien.)

$$\int d^4x d\phi \sqrt{G} \left[E^A_a ar{\Psi} \gamma^a D_A \Psi - c \ k \ ext{sgn}(\phi) ar{\Psi} \Psi
ight]$$

- Desired chirality for zero mode set by orbifold parity.
- The coefficients c_{L,R} control the zero modes peak at either UV or IR
- SM chiral zero modes localized near UV brane ⇒ small overlap after SSB. No need to fine tune Yukawa's. Fermion masses are naturally small. (except 3rd generation quarks)
- The task is find configuration(s) { $c_L^1, c_L^2, c_L^3, c_R^1, c_R^2, c_R^3$ } that fits all the known fermion masses and the CKM/PMNS matrices. (See PRD78,096003, PRD79,056007, PRD80,113013)

the Bulk Wave Function Profiles

 $g_{Gtt}^{L/R}$, the coupling of the 1st KK gluon, $G_{KK}^{(1)}$, to LH/RH zero-mode fermions is proportional to the wavefunction overlapping and can be determined by their profiles.

• Tree-level exchange of $G_{KK}^{(1)}$ leads to 4-Fermi interactions between zero mode fermions

$$\frac{g_{i}g_{j}}{M_{KK}^{2}}\left(\overline{Q_{iL}}f_{jR}\right)\left(\overline{f_{jR}}Q_{iL}\right)+O(1/N_{c})$$

- Besides *H*, the condensate $\Phi = g_t < \bar{Q}t > /M_{KK}^2 \Rightarrow$ composite Higgs doublet below M_{KK} , where $g_t \equiv \sqrt{g_{Gtt}^L g_{Gtt}^R}$.
- Φ and SM Higgs have the same $SU(2)_L \times U(1)_Y$ quantum numbers. $\Rightarrow \rho$ is OK at tree level!
- At M_{KK} , Φ is a static auxiliary field.

$$\mathcal{L} = |D_{\mu}H|^{2} - m_{0}^{2}H^{\dagger}H - \frac{1}{2}\lambda_{0}(H^{\dagger}H)^{2} + \lambda_{t}\overline{Q_{L}}t_{R}\widetilde{H} + g_{t}\overline{Q_{L}}t_{R}\widetilde{\Phi} - M_{KK}^{2}\Phi^{\dagger}\Phi + h.c.$$

 m_0^2 , λ_0 are the usual parameters in the Higgs potential.

Bubble diagram

- At scales μ < M_{KK}, quantum fluctuations generate a kinetic term for Φ as well as kinetic and mass term mixings between φ and H.
- Fermion bubble contribution to scalar (a) 2-point functions and (b) 4-point functions. The dashed lines can be either Φ or H fields.

Effective 2HDM

• The transformations

$$H = \hat{H}, \ \Phi = -\frac{\lambda_t}{g_t}\hat{H} + \frac{1}{g_t\sqrt{\epsilon}}\hat{\Phi}$$

will cast the kinetic terms into canonical diagonal form.

• The resulting Lagrangian of the scalars is delightfully simple:

$$\mathcal{L} \supset |D_{\mu}\hat{H}|^2 + |D_{\mu}\hat{\Phi}|^2 - V(\hat{H},\hat{\Phi})$$

with the loop factors $\epsilon \sim {\it O}(0.1), \, \Delta \sim {\it O}(0.3) M_{\it KK}$, and

$$V(\hat{H}, \hat{\Phi}) = A\hat{H}^{\dagger}\hat{H} + \frac{1}{2}\lambda_0(\hat{H}^{\dagger}\hat{H})^2 + B\hat{\Phi}^{\dagger}\hat{\Phi} + \frac{1}{\epsilon}(\hat{\Phi}^{\dagger}\hat{\Phi})^2 + C(\hat{H}^{\dagger}\hat{\Phi} + \hat{\Phi}^{\dagger}\hat{H})$$

where

$$A = m_0^2 + \frac{\lambda_t^2}{g_t^2} M_{KK}^2, B = \frac{1}{\epsilon} \left(\frac{M_{KK}^2}{g_t^2} - \triangle^2 \right), C = -\frac{\lambda_t M_{KK}^2}{g_t^2 \sqrt{\epsilon}}$$

Electroweak Symmetry breaking of 2HDM

• Define $\tan\beta = {\it v_H}/{\it v_\phi}$ and minimizing the potential yields:

$$\begin{aligned} A(g_t,\lambda_t,m_0)v_H + C(g_t,\lambda_t)v_\phi &+ \frac{\lambda_0}{2}|v_H|^2v_H = 0\\ B(g_t)v_\phi + C(g_t,\lambda_t)v_H &+ \frac{2}{\epsilon}|v_\phi|^2v_\phi = 0 \end{aligned}$$

We require that $v_H^2 + v_\phi^2 = (246 \text{GeV})^2$.

- Above the cutoff, *M_{KK}*, the 4-Fermi condensate approximation is no longer valid.
- There are 14 free parameters in the general 2HDM with sever FCNC problems.

Spectrum of Physical Scalars

Scalar mass matrix:

$$M_{\pm}^{2} = M_{A}^{2} = \begin{pmatrix} A + \frac{\lambda_{0}}{2} v_{H}^{2} & C \\ C & B + \frac{v_{\phi}^{2}}{\epsilon} \end{pmatrix}, M_{0}^{2} = M_{\pm}^{2} + \begin{pmatrix} \lambda_{0} v^{2} \sin \beta & 0 \\ 0 & 4m_{t}^{2} \end{pmatrix}$$

• For H^{\pm}, A^{0} , the mixing angles is β , and (at tree level)

$$M_{A^0}^2 = M_{H^\pm}^2 = \frac{2\lambda_t}{g_t^2\sqrt{\epsilon}\sin 2\beta}M_{KK}^2$$

- $TrM_0^2 = M_{H^{\pm}}^2 + k_1 v^2$ and det $M_0^2 = k_2 M_{H^{\pm}}^2 v^2$, $k_{1,2} \sim O(1)$. Therefore $M_{H^0} \sim O(\text{TeV})$, while $M_{h^0} \sim O(v)$
- Since the second term in M_0^2 is much smaller than the first one, one expects $M_{H^0} \sim M_{H^{\pm}}$, mixing angle $\alpha \sim \beta$ and

$$M_{h^0}^2 \simeq \lambda_0 v^2 \sin^4 \beta + 2\epsilon m_t^2.$$

SM like Higgs mass (Numerical)

The mass of the lighter Higgs boson v.s. λ_0 . The black line is for $M_{KK} = 1.5$ TeV and the red line is for $M_{KK} = 4$ TeV. The shaded regions are the LEP and Tevatron exclusions for the Higgs mass.

SM like Higgs and the Top quark mass

- Also, the h^0 is very SM like. For example, the $h^0 Z^0 Z^0$ coupling is $\cos(\beta \alpha)$
- With the redefined scalar fields,

$$\mathcal{L}_{Y} = \lambda_{t} \overline{Q_{L}} t_{R} \widetilde{H} + g_{t} \overline{Q_{L}} t_{R} \widetilde{\Phi} + h.c. \rightarrow \frac{1}{\sqrt{\epsilon}} \overline{Q_{L}} t_{R} \widetilde{\hat{\Phi}} + h.c.$$

• Top quark gets its mass from coupling to $\hat{\Phi},$ which after symmetry breaking gives

$$m_t=\frac{v\cos\beta}{\sqrt{2\epsilon}}.$$

• $\tan \beta$ is determined by top mass!! $\cos \beta \sim \sqrt{\epsilon}$, or $\tan \beta \sim 3.0$.

Allowed region in the $\{\lambda_t, g_t\}$ parameter space that satisfies m_t and 2nd Mini. Cond. M_{KK} lies between 1.5 to 4 TeV and m_t from 169.7 to 172.9 GeV.

location, location, location

The solution for bulk mass parameters c_L^3 and c_R^3 with two representative 5D Yukawa couplings. The KK mass is varied from 1.5 TeV to 4.0 TeV. The shaded areas are excluded by the $Z \rightarrow b_L \bar{b}_L$.

$\{\lambda_0, m_0\}$

Allowed region in the { λ_0 , m_0 } parameter space that satisfies 1st Mini. Cond. The (blue, red, yellow) correspond to $M_{KK} = \{1.5, 2.5, 3.5\}$ TeV. The lines (solid, dotted, dash) correspond to $g_t = \{2, 3, 4\}$.

• In terms of $\hat{H}, \hat{\Phi}$, the Yukawa sector is

$$\mathcal{L}_{Y} = -\frac{\sqrt{2}\mathcal{M}_{ij}^{d}}{v\sin\beta}\overline{Q_{Li}}d_{jR}\hat{H} - \frac{\sqrt{2}\mathcal{M}_{ij}^{u}}{v\sin\beta}\overline{Q_{iL}}u_{jR}\tilde{H} + \frac{1}{\sqrt{\epsilon}\cos\beta}\overline{Q_{3L}}t_{R}\left(\tilde{\Phi}\cos\beta - \tilde{H}\sin\beta\right) + h.c$$

- FCNC comes solely from the last term (no VEV, physical H[±] or A⁰). Since α ~ β, mainly H₀ in the combination.
- Light quark FCNCs are suppressed by (1) M_{KK} , if through H_0 , H^{\pm} , and A^0 (2) small $\sin(\beta \alpha)$, if through h^0
- The h^0 Yukawa coupling is $-\sqrt{2}(M_{ij}/v)(\sin \alpha / \sin \beta)$, very close to the SM.

- RS model provides an interesting framework to address both the gauge hierarchy and flavor problems.
- Light(heavy) fermion results from the UV(IR) peaking profiles. KK gauge boson peaks near IR.
- factor $\sim (3-5)$ enhancement for the $SU(3)_c$ coupling between the first KK gluon, t_R , and Q_3 .
- A composite Higgs could emerge from the $Q_3 t_R$ condensation below M_{KK} .
- The 2HDM is very predictive: tan β ~ 3, close to the decoupled limit, no(suppressed) FCNC in down(up) sector.