Extracting Particle Masses from Missing Energy Signatures with Displaced Vertices/Tracks

Yue Zhao

Rutgers University, NHETC

May, 10th,2011 PHENO

Arxiv:11xx.xxxx [hep-ph]

with Michael Park and Scott Thomas

New physics, stable invisible particles are usually pair produced.

- R-parity in SUSY
- Conservation of momentum in extra dimension

Kinematic variables : (M_T, M_{T2})

Large data sample is required, not generally applicable at discovery level.

New techniques are introduced when displaced vertices/tracks are involved. Track pointing is well measured. ($10~\mu m$)

Assumption:

- X₁ and Y₁ are only contribution to MET.
 (2 constraint equations)
- 2. Mass Matching between two side of decay chain.(1 constraint equation each step)
- 3. Along the chain, particles are approximately on-shell.

- 4. Displaced vertex: direction of $X_2(Y_2)$, 2 constraints for each displaced vertex.
- 5. Displaced track: direction of $X_2(Y_2)$, 1 constraint for each displaced track.

Displaced vertex:

$$\vec{p}_{X_1} + \vec{p}_{a_i} = \vec{p}_{X_2}$$
$$\vec{p}_{X_2} \propto \vec{n}_{vertex}$$

thus, fixing the ratios between p_x, p_y, p_z of X_2

⇒ 2 constraints for each displaced vertex

Displaced track:

$$\vec{p}_{X_1} + \vec{p}_{a_i} = \vec{p}_{X_2}$$

displaced track and primary vertex

form a 2D plane, normal vector: \vec{n}_{\perp}

$$\vec{p}_{X2} \times \vec{n}_{\perp} = 0$$

⇒1 constraints for each displaced track

 \mathbf{a}_{i}

Displaced vertices:

$$X_1 = Y_1 = 0$$
 Mass

or

$$X_1 = Y_1 \&\& X_2 = Y_2$$

Solvable at event by event level, up to discrete solutions

Displaced tracks:

$$X_1 = Y_1 = 0$$
 Mass & $X_2 = Y_2$ & $X_3 = Y_3$

of Unknowns = # of Constraints +1

Displaced tracks:

$$X_1 = Y_1 \neq 0 \&\& X_2 = Y_2 \&\& X_3 = Y_3$$

Each event defines a curve in 3D space of

$$(M_{X_1}, M_{X_2}, M_{X_3})$$

Find INTERSECTION over few curves, so few events are required.

Particle	Symbol	Mass
Bino	\tilde{B}	$199~{ m GeV}$
Right-handed Slepton	\tilde{l}_R	$107~{ m GeV}$
Gravitino	\tilde{G}	$50~{ m GeV}$

Even with one fewer constraint, one can still find spectrum correctly.

Scanning one parameter provides one effective constraint.

Later more complicated examples.

Case 2B:

of Unknowns = # of Constraints +1

Displaced tracks:

$$X_1 = Y_1 = 0 \&\& X_2 = Y_2 \&\& X_3 \neq Y_3$$

Procedure:

- Scan along displaced track
 - ⇒ each point gives slepton mass(up to discrete ambiguity)
- Collect solutions with weighting (exp decay)
- Sum the weights for each bin of slepton mass.

The real value of slepton mass should show up every time in scanning, so we expect to see a peak at the correct value.

Particle	Symbol	Mass
Right-handed Slepton	\tilde{l}_R	$107.44~\mathrm{GeV}$
Gravitino	\tilde{G}	$0~{ m GeV}$

With a few events, we can extract the mass information correctly.

The scanning does give one more constraint effectively.

Case 3: # of Unknowns = # of Constraints +2

Displaced tracks:

$$X_1 = Y_1 \neq 0 \&\& X_2 = Y_2 \&\& X_3 \neq Y_3$$

Scanning on:

- Position of one of secondary vertices
- X₁/Y₁ mass

Particle	Symbol	Mass
Right-handed Slepton	\tilde{l}_R	$107.44~\mathrm{GeV}$
Gravitino	\tilde{G}	$50 \mathrm{GeV}$

flat ridge, giving a relation between Gravitino mass and Slepton mass

Conclusion:

- Displaced vertices or displaced tracks provide additional handles for kinematic reconstruction of an event.
- Different scenarios

Constraints = Unknowns

Calculation is straightforward, event by event.

Constraints = Unknowns - 1

Scanning one parameter provides one more constraint effectively.

Constraints = Unknowns - 2

Scanning two parameters builds up a relation between two masses.

Still providing one more constraint effectively.

• After getting the spectrum, other important information can be drawn:

e.g. in SUSY,
$$l_0=c au_0\sim {(\sqrt{F})^4\over m_{NLSP}^5}$$