

B Meson Anomalies and Baryogenesis From a Two Higgs Doublet Model

Peter Winslow^{1,2} and Sean Tulin²

¹University of British Columbia, Vancouver, BC, Canada ²TRIUMF, Vancouver, BC, Canada

Motivation: B Meson Anomalies

Within the SM CP violation is understood within the "CKM paradigm" to an accuracy of (20%)

Y. Nir, Nucl. Phys. Proc. Suppl. 117, 111 (2003)

DØ measurement of the like-sign dimuon asymmetry

$$A_{sl}^b = -0.00957 \pm 0.00251 \text{ (stat.)} \pm 0.00146 \text{ (syst.)}$$

V. M. Abazov *et al.*, Phys. Rev. D **82**, 032001 (2010)

Tension at ~3 σ between $B \to \tau \nu$ and $S_{\psi K}$

E. Lunghi and A. Soni, Phys. Lett. B **697**, 323 (2011)

Motivation: B Meson Anomalies

CKMFitter Group has performed a global fit to all flavor observables allowing for arbitrary new physics in both $B_{d,s}$ mixing amplitudes (scenario 1)

$$\mathbf{M_{12}^q} = (\mathbf{M_{12}^q})_{\mathbf{SM}} + (\mathbf{M_{12}^q})_{\mathbf{NP}} \equiv (\mathbf{M_{12}^q})_{\mathbf{SM}} \boldsymbol{\Delta_q}$$

A. Lenz et al., Phys. Rev. D 83, 036004 (2011)

Results imply new bosonic degrees of freedom with new large CP violating phases

 $\mathcal{L}_{\mathbf{NP}} = \frac{\mathbf{c_d}}{\mathbf{\Lambda^2}} (\overline{\mathbf{b}}\mathbf{d})_{\mathbf{V}-\mathbf{A}}^2 + \frac{\mathbf{c_s}}{\mathbf{\Lambda^2}} (\overline{\mathbf{b}}\mathbf{s})_{\mathbf{V}-\mathbf{A}}^2 + \mathbf{h.c.}$

Motivation: Baryogenesis

Sakharov's conditions for baryogenesis within the SM

- Baryon number violation electroweak sphalerons
 C and CP violation KM phase
- departure from equilibrium EWPT

For a successful description of electroweak baryogenesis one needs new CP violation and new bosonic degrees of freedom at $~\Lambda \sim \Lambda_{EW}$ for a strong enough first order phase transition

A singular source for both B meson anomalies and baryogenesis?

Motivation: Baryogenesis

Constraints on $\Delta M_{d,s}$ in $B_{s,d}^0$ systems from tree level Higgs exchange require that

$$\Lambda^2/|c_d| \gtrsim (500 {\rm TeV})^2$$

$$\Lambda^2/|c_s| \gtrsim (100 \text{TeV})^2$$

G. Isidori, Y. Nir and G. Perez, [arXiv:1002.0900 [hep-ph]]

Sufficient baryon number generation requires $|c_{d,s}| \gtrsim \mathcal{O}(10^{-2})$ while a viable first order phase transition requires $\Lambda \lesssim 1 \mathrm{TeV}$

$$\Rightarrow \Lambda^2/|c_{d,s}| \lesssim (10 \text{TeV})^2$$

If NP operators are generated at 1-loop level there is extra loop suppression

$$c_{d,s} \rightarrow c_{d,s}/(4\pi)^2$$

Our Model

A simple (type III) 2HDM with top-charm flavor violation

$$H_{1} = \begin{pmatrix} G^{+} \\ v + \frac{h^{0} + iG^{0}}{\sqrt{2}} \end{pmatrix} \qquad H_{2} = \begin{pmatrix} H^{+} \\ \frac{H^{0} + iA^{0}}{\sqrt{2}} \end{pmatrix}$$

$$\mathcal{L}_{Yukawa} \supset -\frac{1}{\sqrt{2}} \tilde{y}_{it} \overline{u}_{iL} t_{R} (H^{0} - iA^{0}) - \left(V_{CKM}^{\dagger} \tilde{y}\right)_{it} \overline{d}_{iL} t_{R} H^{-} + h.c.$$

$$\tilde{y}_{ij} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \tilde{y}_{ct} \\ 0 & 0 & \tilde{y}_{tt} \end{pmatrix} \qquad |\tilde{y}_{tt}| >> |\tilde{y}_{ct}|$$

Strongest constraints come from flavor observables

Contribution to B mixing enters through box diagrams

Flavor Constraints: Neutral B Mixing

General Method:

Fix $|\tilde{y}_{tt}|, m_{H^+}$ and explore preferred regions for $|\tilde{y}_{ct}|$ and θ_{ct} consistent with flavor observables

Same new physics phase is constrained by all flavor observables

$$\theta_{ct} = \arg\left(\frac{V_{cs}^* \tilde{y}_{ct}}{V_{ts}^* \tilde{y}_{tt}}\right)$$

Axes are defined as

$$Re\tilde{y}_{ct} = |\tilde{y}_{ct}| \cos \theta_{ct}$$
$$Im\tilde{y}_{ct} = |\tilde{y}_{ct}| \sin \theta_{ct}$$

Flavor Constraints: Neutral B Mixing

General Method:

Fix $|\tilde{y}_{tt}|, m_{H^+}$ and explore preferred regions for $|\tilde{y}_{ct}|$ and θ_{ct} consistent with flavor observables

Same new physics phase is constrained by all flavor observables

$$\theta_{ct} = \arg\left(\frac{V_{cs}^* \tilde{y}_{ct}}{V_{ts}^* \tilde{y}_{tt}}\right)$$

$\lim_{\tilde{y}_{ct}} \tilde{y}_{tt} = 1$ $m_{H^+} = 300 \text{ GeV}$ $Re \tilde{y}_{ct}$

${f B_s}$ mixing:

-0.20

Map 1 and 2 σ best fit regions for Δ_s onto the model parameter space

Axes are defined as

$$Re\tilde{y}_{ct} = |\tilde{y}_{ct}| \cos \theta_{ct}$$
$$Im\tilde{y}_{ct} = |\tilde{y}_{ct}| \sin \theta_{ct}$$

- Constraint enters as a quadratic

Flavor Constraints: Neutral B Mixing

 $m_{H^+} = 300 \text{ GeV}$

General Method:

Fix $|\tilde{y}_{tt}|, m_{H^+}$ and explore preferred regions for $|\tilde{y}_{ct}|$ and θ_{ct} consistent with all flavor observables

Same new physics phase is constrained by all flavor observables

$$\theta_{ct} = \arg\left(\frac{V_{cs}^* \tilde{y}_{ct}}{V_{ts}^* \tilde{y}_{tt}}\right)$$

Axes are defined as

Re yet

$$Re\tilde{y}_{ct} = |\tilde{y}_{ct}| \cos \theta_{ct}$$
$$Im\tilde{y}_{ct} = |\tilde{y}_{ct}| \sin \theta_{ct}$$

Constraint enters as a quadratic

$\mathbf{B_{d,s}}$ mixing:

-0.20

Map 1 and 2 σ best fit regions for $\Delta_{d,s}$ onto the model parameter space

P. Winslow (UBC/TRIUMF)

Flavor Constraints: Rare B Decays

Constraint from rare B decays defines an annulus in the model parameter space

$$\frac{Br^{exp}(B \to X_s \gamma)}{Br^{SM}(B \to X_s \gamma)} = 1 + G_1(x_H, x_t)Re\tilde{y}_{ct} + G_2(x_H, x_t)|\tilde{y}_{ct}|^2$$

White region corresponds to region which is consistent with

$$Br(B \to X_s \gamma)^{exp} = (3.55 \pm .39) \times 10^{-4}$$

$$Br(B \to X_s \gamma)^{SM} = (3.6 \pm 0.3) \times 10^{-4}$$

Flavor Constraints: Neutral Kaon Mixing

New physics contributions to $K^0-\overline{K^0}$ arise from box diagrams similar to $B^0-\overline{B^0}$ mixing

Flavor Constraints: Neutral Kaon Mixing

New physics contributions to $K^0-\overline{K^0}$ arise from box diagrams similar to $B^0-\overline{B^0}$ mixing

The tightly constrained parameter space allows for predictions of other processes

-
$$Br(t \rightarrow c\gamma)$$

- $Br(t \rightarrow cg)$
- $Br(t \rightarrow cZ)$
- ?

P. Winslow (UBC/TRIUMF)

Pheno 2011

Baryogenesis

Viable Baryogenesis?

- Strong enough 1st order phase transition?
- Sufficient CP violation?

For a general type II 2HDM a strong enough first order phase transition can occur for $m_{h^0} \lesssim 200~{\rm GeV}$ and $300~{\rm GeV} \lesssim m_{H^0} \lesssim 500~{\rm GeV}$

L. Fromme, S. J. Huber and M. Seniuch, JHEP 0611, 038 (2006)

- Existence of strong enough first order phase transition is assumed for the moment
- Sole source of CP violation is the phase $\, \theta_{tt} = arg(ilde{y}_{tt}) \,$

Not same phase that enters flavor constraints!!

 $\Delta\beta$ is related to the shift in the shift in the Higgs vevs across the bubble wall

The model can easily account for the BAU provided that $|\tilde{y}_{tt}| \gtrsim 0.2$ with $\mathcal{O}(1)$ phase!!!

Conclusions

- Recent anomalies in the B sector could imply new weak-scale bosonic d.o.f. and new large CP-violating phases
- These ingredients are exactly what is required for viable electroweak baryogenesis
- We propose a single 2HDM to account for both the B meson anomalies and the baryon asymmetry of the universe
- Viable electroweak baryogenesis requires $|\tilde{y}_{tt}|\sim 1$ and a light new Higgs scale $m_{H^+}\lesssim 500~{
 m GeV}$
- Flavor constraints are also consistent with $|\tilde{y}_{tt}|\sim 1$ and a light new Higgs scale $m_{H^+}\lesssim 500~{
 m GeV}$
- More investigation is needed to explore possible interesting collider signatures and to address the true strength of the phase transition