Top-philic W^\prime Searches at the LHC

Jiang-Hao Yu

Michigan State University

Based on the work with Edmond L. Berger, Qing-Hong Cao, and C.-P. Yuan, in preparation

PHENO 2011 SYMPOSIUM University of Wisconsin-Madison May 9-11, 2011

Motivation

- \blacksquare Searches for W' resonance are usually studied in the $l\nu$, $t\bar{b}$, and WZ channels at the Tevatron and LHC.
- \blacksquare It is possible that some exotic W' may be discovered in new production channels.

Top-philic W^\prime model

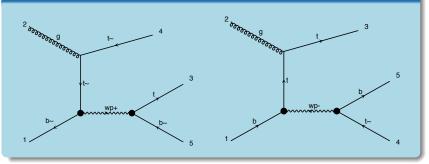
lacksquare A W' only couples to the third-generation quarks.

New discovery channel

- No direct search constraint:
 - W' s-channel production is forbidden (PDF flavors):
 - W' t-channel is suppressed and not for discovery (no resonance peak).
- Need new channel: associated production of W' and top through bg

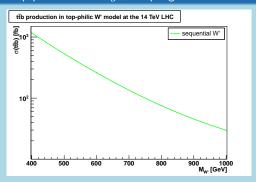
Motivation

- Searches for W' resonance are usually studied in the $l\nu$, $t\bar{b}$, and WZ channels at the Tevatron and LHC.
- \blacksquare It is possible that some exotic W' may be discovered in new production channels.


Top-philic W' model

 $\hfill A$ W^{\prime} only couples to the third-generation quarks.

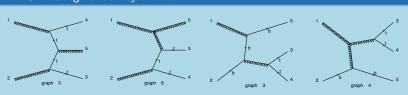
New discovery channel


- No direct search constraint:
 - W' s-channel production is forbidden (PDF flavors);
 - $lue{W}'$ t-channel is suppressed and not for discovery (no resonance peak).
- Need new channel: associated production of W' and top through bg fusion.

Representative Feynman diagrams

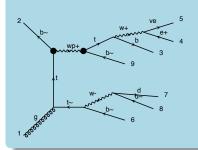
- W' Resonance is constructed from either $(t\bar{b})$ or $(\bar{t}b)$ (non-distinguishable);
- Since $Br(W'^+ \to t\bar{b}) \sim 1$, W' decay back to $t\bar{b}$ final state (BGs: $t\bar{t}j$).
- Although SM BGs $t\bar{t}j$ rate are much larger than signal rate, we show it is promising to discover W' at the 14 TeV LHC with $\mathcal{L}=100~fb^{-1}$.

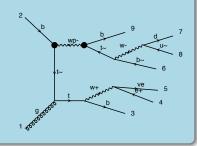
cross section for top-philic W' with g_W coupling



- $\mathcal{L} = i \frac{g_2}{\sqrt{2}} \bar{\psi}_b (f_{W'L} P_L + f_{W'R} P_R) \gamma^\mu \psi_t W'^+_\mu + h.c.;$
- The cross section with generic couplings by scaling $\sigma(g_{W'}) \sim (f_{W'L}^2 + f_{W'R}^2) \sigma(g_W)$.

Main SM backgrounds: $t\bar{t}j$ and $t\bar{t}b$

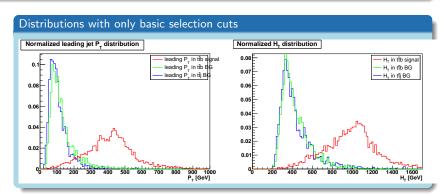

BG production rates


- top pair plus light jet $t\bar{t}j$: 900 pb with $p_{\perp}(j) > 10$ GeV;
- top pair plus b jet $t\bar{t}b$: 6 pb with $p_{\perp}(b) > 10$ GeV.

How to suppress the large BGs?

- Focus on top pair lepton + jet final state in this talk;
- Use 1 TeV W' with g_W coupling $(f_{W'L} = 1, f_{W'R} = 0)$ as template.

Signal: 5 jets + isolated l + met



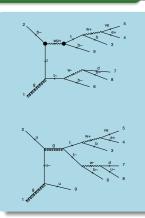
Kinematic features

- Discriminator 1: Hard p_{\perp} cuts for p_{\perp} ordered 5 jets;
 - lacksquare Signal: extra boosted b-jet from W' decay;
 - BGs: mainly QCD radiations;
- lacksquare Discriminator 2: H_T cut and invariant mass cut;
 - Signal: W' mass sets scale of this process;
 - BGs: $t\bar{t}$ invariant mass near threshold dominate.

Further discrimination

- lacksquare $t\bar{t}b$ BG is suppressed; Still large $t\bar{t}j$ rate after cuts;
- Tag the extra jet!

Extra jet b-tagging


- Signal: b-jet, BG: light jet;
- Need full event reconstruction.

Solve combinatorial ambiguity: χ^2 minimization

- Loop over all combinations of 5 jets;
- Pick up the combination which minimizes the following \(\chi^2\):

$$\chi^2 = \frac{(M_W - M_{jj})^2}{\Delta M_W^2} + \frac{(M_t - M_{jl\nu})^2}{\Delta M_t^2} + \frac{(M_t - M_{jjj})^2}{\Delta M_t^2};$$

■ Reconstruction efficiency compared with MC truth: $\epsilon_{\text{extra b}} = 99.4\%$, $\epsilon_{\text{lep t}} = 98.9\%$, $\epsilon_{\text{had t}} = 92.3\%$.

At least one b-tagging

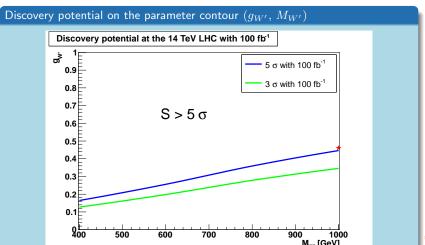
■ After reconstructing the extra jet, picking up the events with the extra jet tagged will suppress the $t\bar{t}j$ BG efficiently.

Monte Carlo simulation

- Setup: 1 TeV W' with g_W coupling at the 14 TeV LHC;
- Event generator: MadGraph 5 to generate signal and BG events.

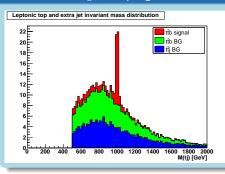
Analysis in different cut level

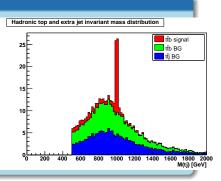
- smearing visible final states with no cuts ($p_{\perp} > 10$ GeV);
- basic p_{\perp} , η , ΔR and met cuts;
- lacksquare p_{\perp} ordered jet cuts and H_T cuts;
- full event reconstruction;
- total $M_{t\bar{t}b(j)}$ mass cut and reconstructed $M_{W'}$ window cuts;
- extra jet b-tagging with at least one b-tagging.


Significance at the 14 TeV LHC with $\mathcal{L}=100~fb^{-1}$

- Significance definition: $S = \frac{N_{signal}}{\sqrt{N_{bq}}}$.
- \blacksquare S = 5.34 for 1 TeV W' with q_W coupling after all cuts.

Parameter scan

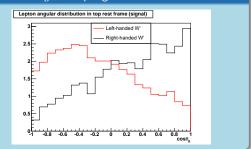

Lower the W' mass will increase the signature space for discovery.



1 TeV W' with g_W coupling

Signature: Resonance Peak around ${\cal M}_{W'}$ mass

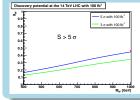
- Peaks in two inv. mass distributions:
 - Reconstructed leptonic decaying top and extra jet inv. mass distribution;
 - Reconstructed hadronic decaying top and extra jet inv. mass distribution.

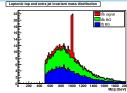


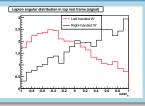
Distinguish top-philic W' models

- Top quark polarization is correlated to the W' chiral couplings;
- lepton angular distribution with the top direction in top rest frame;
 - Signal: Peaked in different region;
 - BGs: nearly flat distribution

Distinguish 1 TeV left-handed and right-handed W' models with q_W coupling

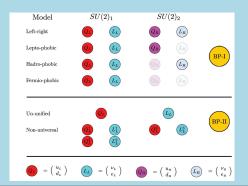



 Charged lepton moves backward for left-handed top, forward for right-handed top.



It is promising to discover the top-philic W' at the LHC 14 TeV with $\mathcal{L}=100~fb^{-1}$, after optimized signal and background discrimination.

Rate for potential, Peak for discovery, Shape for discriminition


Even in a model-independent way, as a possible signature, the top pair and a hard b-jet final state is worth to look at.

Thank You!

My Pheno 2010 talk

- Classify $SU(2)_1 \times SU(2)_2 \times U(1)$ models based on two breaking pattern;
- Top-philic W' model as one specific example in breaking pattern II: $SU(2)_1 \times SU(2)_2 \to SU(2)_L$ at TeV scale.

Model Lagrangian

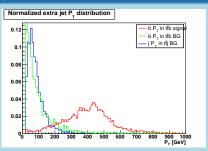
- Chiral coupling: $\mathcal{L} = i \frac{g_2}{\sqrt{2}} \bar{\psi}_b (f_{W'L} P_L + f_{W'R} P_R) \gamma^\mu \psi_t W_\mu^{\prime +} + h.c.;$
 - Scenario (pure left-handed coupling): $f_{W'L} = f$, and $f_{W'R} = 0$;
 - Scenario (pure right-handed coupling): $f_{W'L} = 0$, and $f_{W'R} = f$;
 - Scenario (Vector-like coupling): $f_{W'L} = f$, and $f_{W'R} = f$.

Model parameter constraints

- Escape from most of low energy and LEP constraints, except $Zb\bar{b}$ and $B_d \bar{B}_d$ mixing at one-loop order;
- No direct search constraint from Tevatron and LHC at all.

Benchmark parameter point

- Template (1 TeV W' with g_W coupling): $f_{W'L} = 1$, and $f_{W'R} = 0$;
- Do similar study for other parameter points.


Efficiency

■ The efficiency for the leading jet identified as the extra jet is 81.62%.

B-tagging in this process

- Make use of high event reconstruction efficiency;
- Tag the extra jet to suppress $t\bar{t}j$ bg.

Extra jet (MC truth) plot

Basic selection cuts:

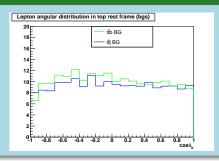
- Acceptance cuts:
 - $P_{\perp}(j) > 20 \text{ GeV}, |\eta(j)| < 2.5;$
 - $P_{\perp}(l) > 20 \text{ GeV}, |\eta(l)| < 2.5;$
 - $E_{\perp}(met) > 20 \text{ GeV}.$
- Isolation cuts:
 - $\Delta R(i, i) > 0.4;$
 - $\Delta R(j, l) > 0.4.$

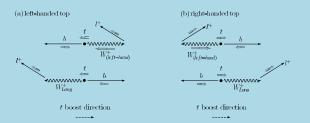
Gaussian Smearing

- Gaussian resolution parametrization $\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \otimes b;$
- \blacksquare For lepton: a=5% and b=0.55%; For jet: a=100% and b=5%.
- Neutrino solutions: pick up neutrino p_z momenta with

Kinematic cuts:

- Hard p_{\perp} ordered cuts:
 - P_⊥ (leading) > 250 GeV;
 - Arr $P_{\perp}(\text{sub-leading}) > 120 \text{ GeV};$
 - P_{\perp} (sub-leading) > 40 GeV.
- \blacksquare H_T cut and total invariant mass
 - $H_T = \sum |p_{\perp}(vis)| > 900 \text{ GeV};$
 - $M_{t\bar{t}b} > 1100 \text{ GeV}.$
- W' resonance invariant mass window cuts:
 - $M_{\bar{t}h} > 500 \text{ GeV}$;
 - \blacksquare 950 < M_{tb} < 1150 GeV.


At least one b-tagging


- Use rejection sampling method to mimic the tagging efficiency:
 - b-tagging efficiency: 60%;
 - light-jet mis-tag efficiency: 0.5%

Event numbers at the 14 TeV LHC with $\mathcal{L}=100~fb^{-1}$

cut level (scale: GeV)	Signal	$tar{t}b$ bg	$tar{t}j$ bg
no cuts $(p_{\perp}>10$)	757	1.78×10^{5}	2.74×10^{7}
basic $p_{\perp},\eta,\Delta R$ cuts	235	3875	445971
p_{\perp} ordered jet cuts	185	1592	183188
HT cuts $(H_T > 900)$	135	432	54534
inv. cuts $(M_{ttb} > 1100)$	135	407	51570
inv. cuts $(M_{\bar{t}b} > 500)$	115	336	37431
inv. mass window cuts	54	36	3783
extra jet b-tagging	33	23	13

