

Charmless hadronic twobody B decays at LHCb

Phenomenology 2011 Symposium

9th – 11th May, University of Wisconsin at Madison

Harry Cliff (University of Cambridge) On behalf of the LHCb collaboration

Motivation

Charmless hadronic two-body B meson decays $(H_b \rightarrow h^+ h'^-)$ present opportunities to:

- Test the Standard Model
- Explore new physics
- Study new sources of CPV

Both **strong** and **electroweak** loop diagrams contribute – sensitive to new physics.

Studies presented:

- $B_s^0 \rightarrow K^+ K^-$ lifetime [LHCb-CONF-2011-018]
- Direct Charge-Parity violation in $B^0 \to K^+\pi^-$ and $B^0_s \to \pi^+K^-$ [LHCb-CONF-2011-011]

The $H_b \rightarrow h^+ h'^-$ spectrum contains many decays – strongly overlapped in mass and with near identical kinematics.

Need strong particle identification (PID) to disentangle them – provided by LHCb's Ring Imaging Cherenkov (RICH) detectors.

RICH detectors allow distinction of protons, pions and kaons.

We impose PID requirements separating out KK, K π and $\pi\pi$ final states.

Measuring the $B_s^0 \rightarrow K^+K^-$ lifetime

Motivation

 $B_s^0 \rightarrow K^+K^-$ dominated by penguin diagrams – sensitive to particles from NP in the loops Decay rate dominated by light mass eigenstate: $\Gamma[f, t] = Ae^{-\Gamma_L t} + Be^{-\Gamma_H t}$ Fitting a single exponential to this gives an effective lifetime: $\tau_{K^+K^-}^{-1} = \frac{A/\Gamma_L + B/\Gamma_H}{A/\Gamma_L^2 + B/\Gamma_H^2}$ 1.01 $\frac{\Delta\Gamma_s^{\rm SM}}{\Gamma_s} = -0.140 \pm 0.020$ 1.00 Effective lifetime related to the mixing 0.99phase ϕ_s $0.98 \\ 0.97 \\ U_{+K^{-}}^{B^{*}}$ In the SM $\phi_s = (2.1 \pm 0.1)^{\circ}$ Giving: 0.950.94 $\tau_{K^+K^-}(SM) = (1.390 \pm 0.032)$ ps 0.93 Illustration of $\tau_{K^+K^-}$ measurement with 1% error 0.92R. Fleischer, R. Knegjens, [arXiv:hep-45 -45-900 90 135 -135180 -180 ϕ_s [deg] ph/1011.1096].

Correcting for proper decay time acceptance

Trigger and selection accept displaced decay vertices

-> sculpts the measured proper decay time distributions

This"acceptance" must be corrected for.

Two methods:

Relative cancels acceptance by taking ratio with kinematically similar $B_d^0 \rightarrow K^+ \pi^-$

Absolute uses data-driven approach to calculate acceptance, then accounted for in the fit

Both methods **completely data-driven**, no MC input

Relative Lifetime Measurement

The measured proper time distribution:

$$F_{meas}(t) = [F_{true}(t) * G_{res}(t)] \times H_{acc}(t)$$

 $B_s^0 \to K^+K^-$, $B_s^0 \to \pi^+K^- B_d^0 \to K^+\pi^-$, $B_d^0 \to \pi^+\pi^-$ all have very similar kinematics and the acceptances are the same to a high precision.

$$R(t) = \frac{\left[F_{true}\left(t,\tau_{1}\right) * G_{res}\left(t,\sigma\right)\right] \times H_{acc}\left(t\right)}{\left[F_{true}\left(t,\tau_{2}\right) * G_{res}\left(t,\sigma\right)\right] \times H_{acc}\left(t\right)}$$

Which to a good approximation is:

$$R(t) = Ae^{-t\left(\frac{1}{\tau_1} - \frac{1}{\tau_2}\right)}$$

 $B_d^0 \to K^+\pi^-$ is used as the control mode (most abundant $H_b \to h^+h'^-$ channel) and the PDG value of its lifetime used as input to the fit.

Relative Lifetime Measurement

Outline of the method:

- 1) Dataset split into bins in proper decay time
- 2) Fits to the invariant mass spectra of the KK and $K\pi$ final states are performed in each bin

3) Yield of $B_d^0 \to K^+\pi^-$ extracted from the fit in each proper decay time bin

4) Ratio of yields of $B_s^0 \to K^+K^-$ and $B_d^0 \to K^+\pi^-$ fitted across all bins and the effective $B_s^0 \to K^+K^-$ lifetime extracted

Absolute Lifetime Measurement

Complementary approach -> determines proper decay time acceptance in a completely data-driven way:

- 1) Acceptance determined on a candidate-by-candidate basis
- 2) p-p interaction point moved along the momentum vector of the B_s

- Selection decision evaluated for a range of hypothetical decay times in order to calculate the point where a candidate is rejected – called the "turning point"
- 4) Turning points, one per candidate, fed into fit to make an unbiased lifetime measurement

Absolute Lifetime Measurement

Mass fit determines probability candidate is signal/background Proper decay time fit -> extract lifetime. Requires a background proper time PDF.

- No *a priori* model for background proper decay time distribution
- A sum of Gaussian kernels, one per candidate, is used to extract a non-parametric background decay time PDF from data.
- Provides a continuous, non-binned function to the fitter, applicable over a large range of statistics.

Systematic uncertainties and results

Both methods have been extensively validated and the following sources of systematic uncertainty evaluated:

- Contamination from other $H_b
 ightarrow h^+ h'^-$ channels
- Background model
- Acceptance correction
- Primary vertex association in multiple PV events
- Proper decay time scale at LHCb
- Reconstruction acceptance

Relative and absolute results consistent within 0.5σ with same sensitivities. **Preliminary result** is:

 $\tau_{K^+K^-} = (1.440 \pm 0.096(\text{stat}) \pm 0.010(\text{syst}))\text{ps}$

CDF result $\tau_{K^+K^-} = (1.53 \pm 0.18(\text{stat}) \pm 0.02(\text{syst})) \text{ps}$

[CDF Collaboration, "Measurement of the $B_s^0 \to K^+K^-$ lifetime and extraction of $\Delta\Gamma_{CP}$ and Γ_{CP} ", CDF public note (unnumbered)]

SM Prediction $au_{K^+K^-}(SM) = (1.390 \pm 0.032)$ ps

R. Fleischer, R. Knegjens, [arXiv:hep-ph/1011.1096].

Direct Charge-Parity violation in $B^0 \rightarrow K^+\pi^-$ and $B^0_s \rightarrow \pi^+K^-$

Direct CPV in $B^0 \to K^+\pi^-$ and $B^0_s \to \pi^+K^-$

Current Status

$B^0 o K^+ \pi^-$

	$A_{CP}(B^0 o K^+ \pi^-)$
BaBar	$-0.107\pm0.016^{+0.006}_{-0.004}$
Belle	$-0.094 \pm 0.018 \pm 0.008$
CLEO	$-0.04 \pm 0.16 \pm 0.02$
CDF	$-0.086 \pm 0.023 \pm 0.009$
Average	$-0.098\substack{+0.012\\-0.011}$

BaBar, arXiv:0807.4226 [hep-ex] Belle, PRL 98 (2007) 211801 CLEO, PRL 85 (2000) 525 CDF, arXiv:1103.5762 [hep-ex] $B_s^0 \to \pi^+ K^-$

CDF with 1 fb⁻¹ $A_{CP}(B_s^0 \to \pi^+ K^-) = 0.39 \pm 0.15 \pm 0.08$

$$A_{CP} = A_{CP}^{RAW} - A_D(K\pi) - \kappa A_P$$

Production asymmetry

Raw asymmetry measured in data

Instrumental $K^+\pi^-/K^-\pi^+$ asymmetry

Instrumental asymmetries calculated using $D^* \to D^0(K\pi)\pi_s$, $D^* \to D^0(KK)\pi_s$, $D^* \to D^0(\pi\pi)\pi_s$ and $D^0 \to K\pi$ decays.

Production asymmetry studied using $B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$ decays.

Direct CPV in $B^0 \to K^+ \pi^-$

Raw CP asymmetry is -0.086 ± 0.033 .

After corrections $A_{CP}(B^0 \to K^+\pi^-) = -0.074 \pm 0.033 \pm 0.008$.

Direct CPV in $B_s^0 \to \pi^+ K^-$

Raw CP asymmetry is 0.15 ± 0.19 .

After corrections $A_{CP}(B_s^0 \to \pi^+ K^-) = 0.15 \pm 0.19 \pm 0.02$.

Using the 37pb⁻¹ p-p dataset collected in 2010:

LHCb has made the world's best measurement of the $B_s^0 \rightarrow K^+K^-$ lifetime

 $\tau_{K^+K^-} = (1.440 \pm 0.096(\text{stat}) \pm 0.010(\text{syst}))\text{ps}$

consistent with the SM prediction and the CDF result.

And the CP asymmetries

 $A_{CP}(B^0 \to K^+\pi^-) = -0.074 \pm 0.033 \pm 0.008$

 $A_{CP}(B_s^0 \to \pi^+ K^-) = 0.15 \pm 0.19 \pm 0.02$

in agreement with the world averages.

With the expected $1fb^{-1}$ LHCb will be able to make a $B_s^0 \rightarrow K^+K^-$ lifetime measurement with an uncertainty smaller than the SM prediction and will dominate world averages for the time-integrated asymmetries.

Backup

Acceptance cancellation

