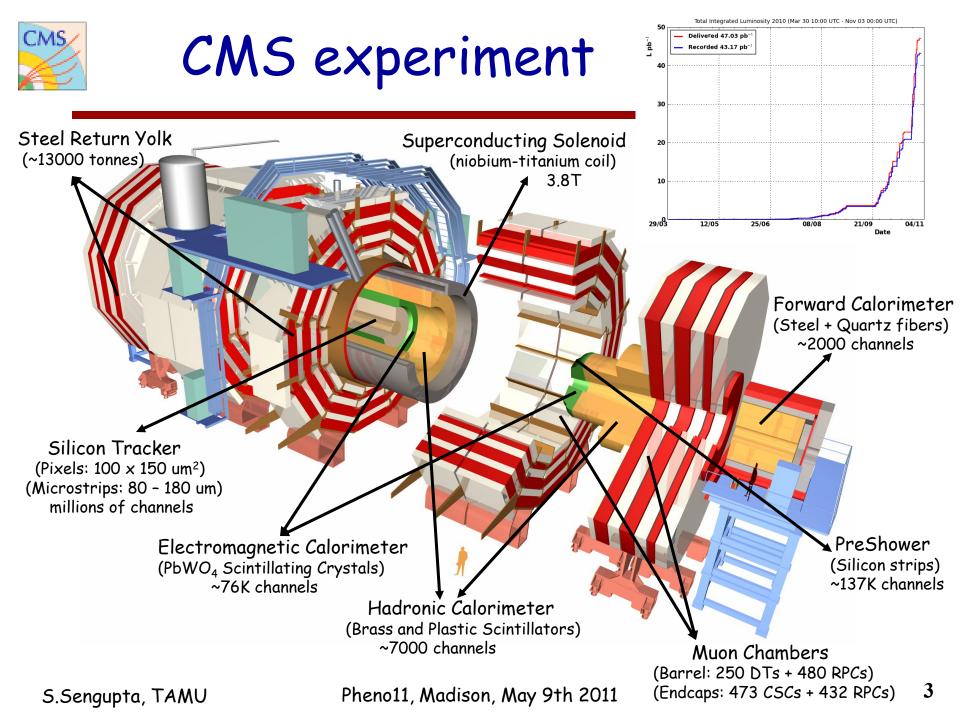


Recent Results in Jet Physics from CMS

Sinjini Sengupta Texas A&M University On behalf of the CMS Collaboration

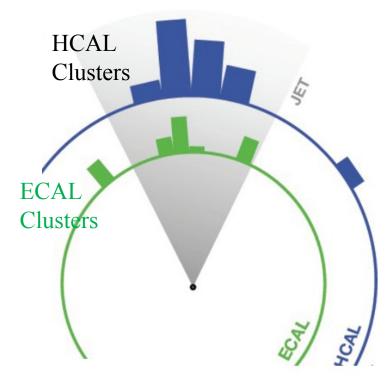
Phenomenology 2011 Symposium, Madison, WI



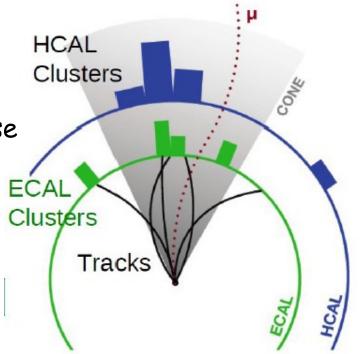
Outline

- o The CMS detector
- o Jets at CMS
 - Jet Reconstruction
 - Jet Calibration and Resolution
- o Recent Jet Results
 - Inclusive Jet Cross Section
 - Dijet Mass
 - Dijet Angular Distributions
 - Dijet Azimuthal DeCorrelations
 - > 3 jets/2 jets Cross Section Ratio

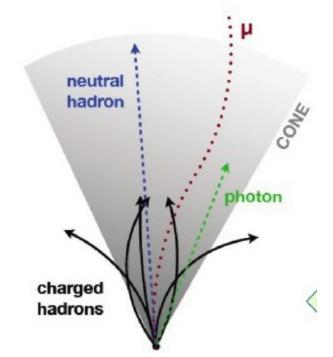
o Conclusions


S.Sengupta, TAMU

Jet Reconstruction in CMS

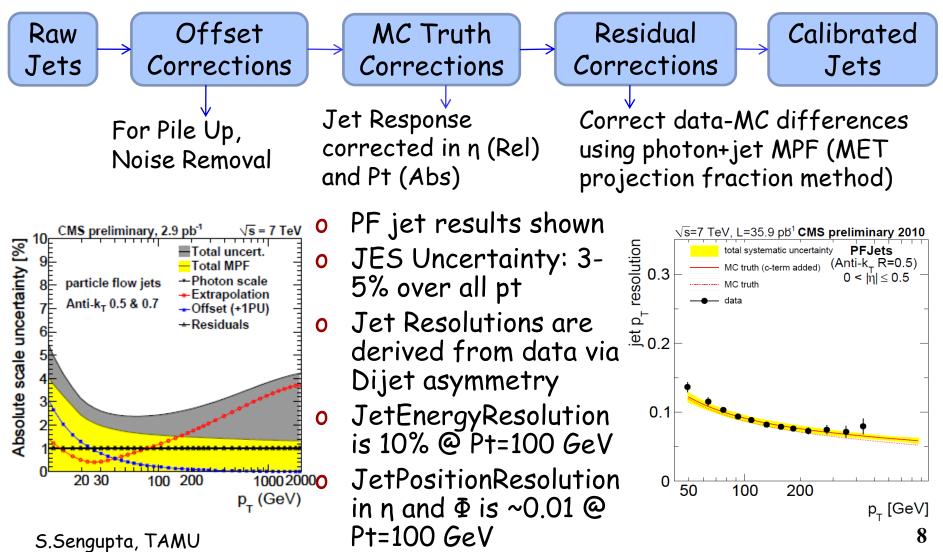

- Jet algorithms available at CMS: kT, anti-Kt CMS default algorithm is anti-Kt, R = 0.5, 0.7
- o Calorimeter Jets
 - Uses calorimeter towers to construct jets
 - Robust, worst resolution at lower pts

Jet Reconstruction in CMS


- Jet algorithms available at CMS: kT, anti-Kt CMS default algorithm is anti-Kt, R = 0.5, 0.7
- o Calorimeter Jets
 - Uses calorimeter towers to construct jets
 - Robust, worst resolution at lower pts
- o Jet Plus Tracks
 - Uses CaloJets corrected for tracks
 - Improved resolution and energy response


Jet Reconstruction in CMS

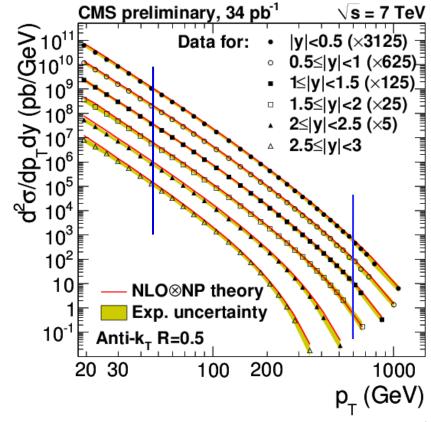
- Jet algorithms available at CMS: kT, anti-Kt CMS default algorithm is anti-Kt, R = 0.5, 0.7
- o Calorimeter Jets
 - Uses calorimeter towers to construct jets
 - Robust, worst resolution at lower pts
- o Jet Plus Tracks
 - Uses CaloJets corrected for tracks
 - Improved resolution and energy response
- o Particle Flow Jets
 - > Uses all identified particles in detector
 - Has the best resolution
 - Used by most analyses


Jet Calibration and Resolution

• CMS has a factorized approach to Jet Energy Corrections

Jet Calibration and Resolution

• CMS has a factorized approach to Jet Energy Corrections

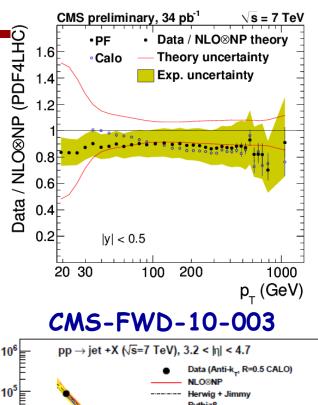

Inclusive Jet Cross Section

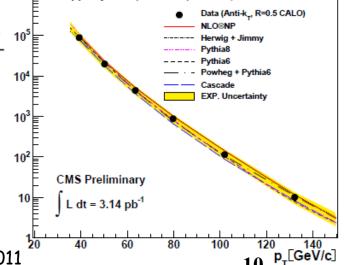
o Jet Cross Section Measurements are important as a

- Tests of the Standard Model, Parton Distribution Functions
- Test of NLO predictions
- Contact Interactions Search
- O CMS results have already improved on Tevatron reach
 ▷ Pt range probed: 18-1100 GeV (50-650 GeV Pt range @ Tevatron)
 ▷ 6 different rapidity bins used in the region |n| < 3.0
 ▷ CMS Jet spectrum measured

using Particle Flow Jets

CMS-QCD-10-011

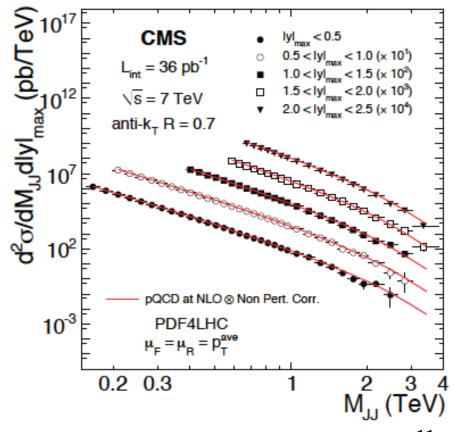



Inclusive Jet Cross Section

- o Largest Systematic uncertainties
 - From data: absolute jet energy scale (which is being further improved with new data in 2011) and from integrated luminosity measurement
 - From theory: Scale and PDF uncertainties
- NLO pQCD predictions using PDF4LHC recommendations agree with data
 - PDF4LHC recommendation is the middle of envelope covered by CT10, MSTW2008NLO and NNPDF2.0 uncertainty bands.
- Measured Forward Jet Production
 - ▶ 3.2 < |n| < 4.7; Pt range: 35-150 GeV</p>
 - Uses the Forward Hadronic Calorimeter
 - Total systematic uncertainties ±25%
 - First test of forward pQCD predictions and first cross check of QCD background estimates of other scattering processes.

S.Sengupta, TAMU

Pheno11, Madison, May 9th 2011

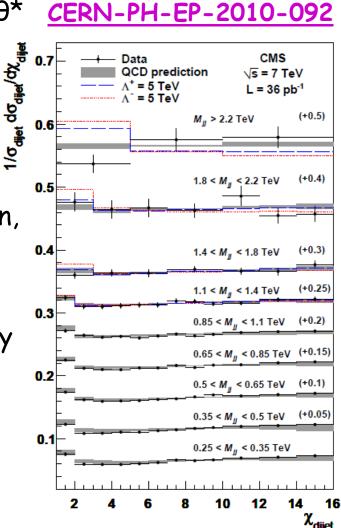


Dijet Mass

- Dijet mass measurements are a test of SM pQCD predictions
 - They can also be used as a probe for new physics such as dijet resonances and contact interactions.
- Parton momentum fractions probed: 8·10⁻⁴ ≤ x₁·x₂ ≤ 0.25
 - Dijet mass: 0.2-3.5 TeV
 - Measured for 5 bins in rapidity
 - Particle Flow jets used
- Systematic Uncertainties is dominated by jet energy scale (data) and PDF @ high mass, non perturbative correction @ low mass (theory)
- Data in good agreement with theoretical prediction in this kinematic region

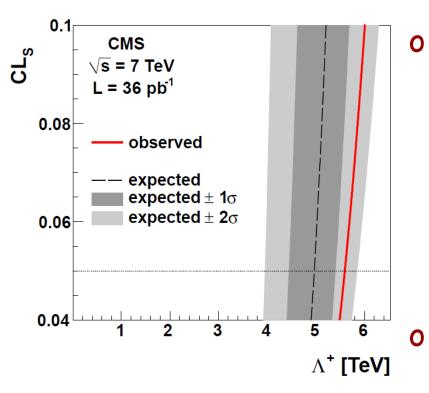
PRL 105:221801, 2010

S.Sengupta, TAMU



Dijet Angular Distributions

- o Probes the parton-parton scattering angle Θ^*
- $X_{dijet} = (1+|\cos\theta^*|)/(1-|\cos\theta^*|)$ where $|\cos\theta^*| = \tanh(0.5 \cdot |y_1 - y_2|)$


Measured over wide range of dijet invariant mass

- o While QCD predicts a flat X_{dijet} distribution, new physics would show an excess at low values of X_{dijet} due to quark compositeness
- Normalized X_{dijet} distributions are relatively insensitive to overall jet energy scale but sensitive to the rapidity dependence of jet energy calibrations
- Good agreement with NLO pQCD found

Dijet Angular Distributions

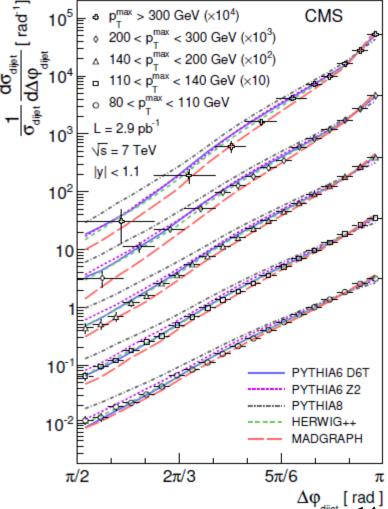
No evidence for new physics has been found

X_{dijet} measurement is used to set limits on quark compositeness

- 4 fermion contact interaction term is added to the QCD Lagrangian
- Mass scale A denotes strength of quark substructure binding interactions and physical size of composite states

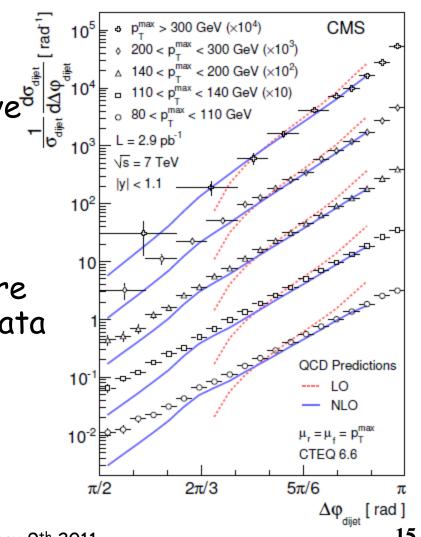
• Following CLs limits were set

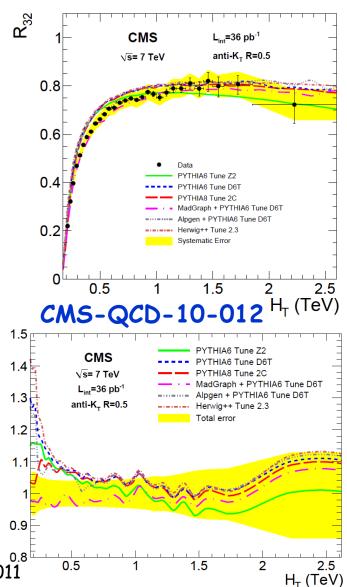
- Exclude Λ⁺ < 5.6 TeV @ 95% CL for destructive interference
- Exclude Λ⁻ < 6.7 TeV @ 95% CL for constructive interference


S.Sengupta, TAMU

Pheno11, Madison, May 9th 2011

Dijet Azimuthal DeCorrelations


- Δφ_{dijet} = |Φ_{jet1} Φ_{jet2}|
 Δφ_{dijet} DeCorrelations are used to study QCD radiation effects over a wide range of jet multiplicities without having to measure all the additional jets
 - Measurement is sensitive to initial state gluon radiation
- Pythia6 and Herwig++ are found to best describe the shape of the distributions
 - > Π ~signifies a 2 jet event
 - $> 2\Pi/3$ ~signifies a 3 jet event
 - > $< 2\Pi/3$ is the multijet regime


CMS Dijet Azimuthal DeCorrelations

- Comparisions are also made to pQCD predictions
- Predictions near $\Delta \varphi_{dijet} = \Pi$ have been omitted due to their sensitivity to higher order corrections
- o Predictions from NLO pQCD are in reasonable agreement with data except at small $\Delta \phi_{dijet},$ where multi parton radiation effects dominate

3jets/2jets Cross Section Ratio

- o R_{32} is defined as the ratio of cross section of inclusive 3 jets to 2 jets
- R₃₂ provides a complimentary probe for various pQCD based MC models
- Extend transverse momentum reach beyond 600 GeV @ Tevatron
- Major systematic uncertainties cancel out (JES, luminosity)
- Measurement compared to several MC generators (Pythia, Herwig++, Madgraph, Alpgen)
- Good agreement with predictions
 - Study extends the validity of different MC generators considered at TeV scale.

S.Sengupta, TAMU

Pheno11, Madison, May 9th 2011

//C/Data

- o LHC and CMS performed very well in 2010.
 - Several successful QCD analyses performed and published
 - Our robust understanding of the Jet reconstruction and energy calibration made these measurements competitive
- Data agrees with pQCD predictions at the new $\int s = 7$ TeV
 - CMS measurements will be made for further tuning of the MC generators to account for small observed discrepancies
- New data in 2011 is already being analyzed
 - \succ CMS plans to perform precision studies with the new data as in measurement of a_s and to differentiate between various PDFs
 - Increased statistics will allow us to further reduce uncertainties related to jet quantities.