Claudia Frugiuele Carleton University

MMRSSM: MoreMinimal MRSSM Lepton number as R symmetry, sneutrino as down type Higgs

In collaboration with Thomas Grégoire

Pheno 2011, 09/05/11

MSSM minimal SUSY extension of SM, but... little hierarchy problem, flavor problem, small parameter space compatible with data..

Need to explore different SUSY breaking scenarios

SUPERSOFT SUSY BREAKING

(Fox, Nelson, Weiner, 2002)

no logs divergencies, gauginos heavier than scalars, ameliorate little hierarchy problem

R symmetric SUSY models

R symmetry

 $U(1)_R$ continuous

It acts differently on the fermionic and bosonic component of a superfield

ChiralSuperField	R
bosonic component	R
fermionic component	R-1

Dirac gauginos

Majorana mass are forbidden by R symmetry. Need to be Dirac fermions

How Dirac mass for the gauginos are generated?

Is the MRSSM the more minimal R symmetric model?

The electronic sneutrino does not carry R charge/lepton number

a sneutrino VeV does not break lepton number

No Majorana mass for the neutrino induced

The electronic sneutrino does not carry R charge/lepton number

a sneutrino VeV does not break lepton number

No Majorana mass for the neutrino induced

Sneutrino can play the role of the down type Higgs $H_{\rm d}$

More minimal particle content than in the MRSSM two higgs doublets instead of four!

D hep-ph 1103.1647v2

Standard lepton number a violated R symmetry/lepton number forbids Majorana mass for neutrinos

Experimental constraints from EWPM

- R symmetry as lepton number allows to make the sneutrino the down type higgs!
- large parameter space for the sneutrino VeV

How does it look the MMRSSM at the LHC?

Our R parity $R_a = (-1)^{3B + L_b + L_c + 2s}$

Lightest R_a odd particles charged lepton and neutrinos flavor a

Multileptons signature!

Same signatures of Rp violating models, but there are distinctive features! Possible to distinguish: Majorana vs Dirac gauginos

Ex same sign leptons signature absent when gauginos are Dirac

or in the MMRSSM Stronger R_p violation In the standard scenario trilinear R_p violating couplings induce neutrino mass, in our case they don't (R symmetry lepton number). $\begin{array}{c} \tilde{d}_{lR} \\ \nu_{iL} \\ \hline \\ \lambda'_{ikl} \end{array}$ left/right mixing forbids by R symmetry (a)(b)fig. hep-ph/0406039v2 $y_b < 0.47$ **MMRSSM** $\lambda_{133}' = y_b < 10^{-4}$ MSSM with R_p violation Standard scenario more constrained!

Copious leptoquark signatures

MMRSSM

 $y_b < 0.47$

MSSM with R_P violation

$$\lambda_{133}' = y_b < 10^{-4}$$

$$\tilde{b}_R \to b\nu_e \text{ or } \tilde{b}_R \to te$$

 $\tilde{t}_L \to be$

sizable branching ratio in the MSSM, shorter decay chain!

Conclusion

- MMRSSM has a minimal particle content
- The sneutrino is the down type Higgs
- Distinctive LHC phenomenology (copious leptoquark signatures, dirac gauginos)
- Naturalness of the model (mu problem, LEP bounds)
- Neutrino mass, and dark matter candidate

L_a Yukawa coupling

 $L_a L_a l_a^c$ null

 $\int \frac{d^4\theta}{M} X^{\dagger} H_u^{\dagger} L_a l_a^c$, need to be generated by SUSY breaking

 $W_{y_a} = M_X X_u X_d + y_1 X_d L_a l_a^c + y_2 H_u X_d \bar{\Phi} + y_3 X_u X_d \Phi,$

$$y_a \sim \lambda \frac{y_1 y_2 y_3}{16\pi^2} \frac{F}{M_T^2}$$

$$a= au$$
 $_{F}\sim M_{T}^{2}$

low scale susy breaking