
Claudia Frugiuele
Carleton University

MMRSSM: MoreMinimal MRSSM
Lepton number as R symmetry, 
sneutrino as down type Higgs

Pheno 2011, 09/05/11

In collaboration with Thomas Grégoire



Need to explore different SUSY 
breaking scenarios

MSSM minimal SUSY extension of  SM, but...
little hierarchy problem, flavor problem,
small parameter space compatible with 

data.. 

SUPERSOFT SUSY BREAKING
                                                                   (Fox, Nelson, Weiner, 2002)

  no logs divergencies, gauginos heavier than scalars, 
ameliorate little hierarchy problem

R symmetric SUSY models



R symmetry

U(1)R

It acts differently on the fermionic and bosonic 
component of a superfield

continuous  

U(1)R

SuperField R

Bosonic component R 1
Fermionic component R− 1 1

Table 2: R-symmetry charge assignment for the chiral supermultiplets in our model.
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R(Wα) = 1 gauge boson 0
gauginos have R charge 1



Dirac gauginos
Majorana mass are forbidden by R symmetry.
Need to be Dirac fermions

How Dirac mass for the gauginos are generated?

SuperField R-charge
ψW̃ 0
ψB̃ 0
ψG̃ 0

4

New Adjoints superfields for each SM 
gauge group 

�
d2θ
M W �

αWα
i ψi

W �
α ∼ Dθα

supersoft operator
D term spurion



MRSSM 
MinimalRSymmetricSusySM

Σ→ TΣ†
T

†

SuperField R-charge
Hu 0
Hd 0
Ru 2
Rd 2
ψW̃ 0
ψB̃ 0
ψG̃ 0

3

Enlarged Higgs sector, 
two new doublets Ru Rd

 Adjoints superfields for each SM gauge group to give Dirac 
mass to the gauginos

Rp ⊂ U(1)R

arXiv::0712.2039 [hep-ph]



Is the MRSSM the more 
minimal R symmetric 

model?



Lepton number as R 
symmetry

SM particles: just the electron and its neutrino 
carry R charge

Ex:  Qi R charge 1, fermion R 
charge 1-1=0

      has  R charge 0, fermion 
component 0-1=-1

SUSY partners carry R charge besides the electron scalar partners
Squarks are then leptoquarks!
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Table 1: R-symmetry charge assignment for the chiral supermultiplets in our model.
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The electronic sneutrino does not carry 
 R charge/lepton number

a sneutrino VeV does not break lepton number

No Majorana mass for the neutrino induced 



The electronic sneutrino does not carry 
 R charge/lepton number

a sneutrino VeV does not break lepton number

No Majorana mass for the neutrino induced 

Sneutrino can play  the role of the down type 
Higgs Hd 

More minimal particle content than in the MRSSM
two higgs doublets instead of four!

hep-ph 1103.1647v2SOHD



Down type Yukawa couplings=  standard Rp  violating couplings
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MMRSSM Superpotential

just two higgs doublets!

a = e or µ or τ

Hd → La

inert doublet



Experimental constraints
from EWPM

Standard lepton number a violated
R symmetry/lepton number forbids 

Majorana mass for neutrinos 



      1) Lepton Mixing 

through anomaly mediation. Therefore, it is necessary to add to eq 2 the additional R symmetry violating
soft terms:
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where m 3
2

= ΛSUSY
MP lanck

is the gravitino mass, and ΛSUSY indicates the SUSY breaking scale. However,
for relatively low SUSY breaking ΛSUSY scale we can ignore these contribution compared to the R-
symmetric SUSY breaking terms in eq. 2 . Anyway, even though these terms are small compared with
the R-symmetric terms it is important to make sure that they don’t induce a Majorana mass term for
the neutrino out of the experimental bounds. We will discuss this in the following section.

For what concern the introduction of the neutrino masses in the model the R symmetry forbids a
Majorana mass for the neutrino νa, but not for the flavor b, c. We can indeed write down the following
R invariant higher dimension operators:

�
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(HuLb)(HuLb), (8)
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where the scale Mf is some flavor scale where the overall lepton number Lb + Lc is broken. These
operators generate the mass terms, and the mixing terms for the b, c neutrinos. The mass term for the
flavor a could be generated by anomaly mediation or by some other R symmetry breaking mechanism
which should also generate the mixing terms between the flavor a, and b, c.

3 Experimental constraints

Our objective in the present section is to study the experimental constraints on the MMRSSM. First we
will show that the mixing of the charged lepton la, and the neutrino νa with the higgsino, the adjoint
fermions and the gauginos is compatible with the electroweak precision measurement for a broad range
of parameters. In particular the sneutrino VEV can be as big as ∼ 100 GeV no matter which is the
lepton number corresponding to the U(1)R symmetry, and therefore the MMRSSM parameter space is
not constrained to be a high tanβ region as one might think at first.

Also, as we have already noticed, the MRSSM violates the Rp parity violating the standard lepton
symmetry U(1)a, and in this section we will study the experimental bounds which apply to this scenario.

Furthermore, we will show that the breaking of the R-symmetry induced by anomaly mediation does
not lead to a dangerous Majorana mass term for the neutrino νa.

3.1 Collider constraints

3.1.1 Lepton and neutrino mixing: limits on the sneutrino VEV from EWPM

In the MMRSSM all the sparticles, expect the sneutrino and the slepton of flavor a, are a leptons, and
in particular the new fermions ( gauginos, adjoints, higgsinos) mxies with the ordinary neutrino and
charged lepton.

Indeed the left handed component of the charged lepton l
±
a mixes with the charged components of

the adjoint triplet ψW̃ , that is:
l
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where the mixing is determined diagonalising the chargino mass matrix.
In the gauge eigenstate basis Ψ± = (W̃+
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The physical neutrino is the massless eigenvalue of the matrix MN , and it corresponds to the following
mixture:

ν�a = cννa + cB̃ψB̃ + cW̃ ψW̃ , (15)

where the mixing angle:
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The mixing changes the coupling of the lepton a with the vector bosons, and therefore it is essential
to check under which conditions this is compatible with EWPM. For example the coupling of l

±
a to the

Z
0 changes due to the mixing with the triplet ψW̃ in the following way:
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2) Extra tree level 
contribution from 
down type Yukawa 
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Contribution to GF

fig. hep-ph/0406039v2

yµLeLµµc

Upper bound on the sneutrino VeV

yτ < 0.07 va > 15 GeV very high          excluded!tanβ



• R symmetry as lepton number allows to 
make the sneutrino the down type higgs!

• large parameter space for the sneutrino VeV

How does it  look the 
MMRSSM at the LHC?



Our R parity

Lightest Ra odd particles  charged 
lepton and neutrinos flavor a
 
 
Multileptons signature!
 

Ra = (−1)3B+Lb+Lc+2s



q̃ → qχ0
1

W±e∓

Neutralino NLSP

q̃ → qχ0
1

τ τ̃R
eντ

τνe

Right Stau NLSP

mixing lepton/chargino

Typical signatures



Same signatures of
Rp violating models, but 

there are distinctive 
features!

Possible to distinguish:
Majorana vs Dirac

gauginos
Ex same sign leptons signature absent 

when gauginos are Dirac



In the standard scenario trilinear Rp violating couplings induce 
neutrino mass, in our case they don’t (R symmetry 
lepton number). 

Standard scenario more constrained!

or in the MMRSSM  Stronger Rp violation    

yb < 0.47MMRSSM

MSSM with Rp violation

left/right mixing forbids 
by R symmetry 

λ�133 = yb < 10−4

fig. hep-ph/0406039v2



Copious leptoquark 
signatures
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m3/2 < 1 MeV

G̃→ νeγ

τ > τuniverse

m3/2 ∼ 1 MeV

Ω3/2h
2

< 10−8

λ�133 < 4 10−4

b̃R → bνe or b̃R → te

t̃L → be

1

MMRSSM

MSSM with Rp 
violation

sizable branching ratio in 
the MSSM,
shorter decay chain!

yb < 0.47

λ�133 = yb < 10−4



Conclusion

• MMRSSM has a minimal particle content

• The sneutrino is the down type Higgs

• Distinctive LHC phenomenology (copious 
leptoquark signatures, dirac gauginos)

• Naturalness of the model ( mu problem, 
LEP bounds)

• Neutrino mass, and dark matter candidate 



BACKUP



where m 3
2

is the gravitino mass, n is the loop number(n > 1), Λ ∼ 1 TeV, and cντ is a coefficient,

cνa(ybottom, g) ≤ 1.
If we take cνa(ybottom, g) ∼ 1, with ybottom =

mb
va

, and n = 2
2
, imposing Mνa < 1eV we obtain:

Mνa =

mbv2
um 3

2

va(4π)6Λ2
< 1eV, (33)

and then writing vu = tanβv, and va =
v

(1+tan β) , where v = 246 GeV :

Mνa =
mbv

(4π)6Λ2

tan
2 β

1 + tan β
m 3

2
< 1eV, (34)

and substituing the numerical values the bounds on the gravitino mass is:

m 3
2

< (3.2
1 + tan β

tan
2 β

)GeV. (35)

Therefore taking va ∼ 5 GeV ( high tanβ limit), we obtain the following limit: m 3
2

< 60 MeV, which

is a less stringet limit than the one obtained considering the one loop diagram generated through the

trilinear coupling due also to the bigger loop suppression.

Therefore, the MMRSSM is compatible with the experimental data for the neutrino masses as long as

we consider a fairly low SUSY breaking scale. Indeed in the following section we will consider a scenario

of gauge mediatied SUSY breaking.

4 SUSY breaking

The bounds on the neutrino masses impose the SUSY breaking scale ΛSUSY to be quite low, ΛSUSY <
10

11
GeV, and therefore, to consider a low scale SUSY breaking mediation mechanism.

In the present section we are going to briefly review the most salient aspect of R preserving gauge

mediation following mainly reference [Benakli]. In this reference the masses are generated using a com-

bination of both D andF spurions: the gaugino masses being dominated by the effect of the first, while

the MSSM scalar masses are dominated by the effect of the second. So SUSY breaking is caused by a

D-term vacuum expectation value of a hidden sector vector field,U(1)
�
hidden gauge group , with gauge

field strenght W �
α together with a spurion field X of R charge 2 which gets a F term. However, we will

consider just the contribution of the D spurion introducing the F spurion later just to generate the µ,
and the Bµ term. The reason of this choice is related to the fine tuning of the model as we will explain

in the electroweak symmetry breaking section.

The operator which generates the Dirac mass for the gauginos is:

�
d2θ

ci

M
W �

αWα
i Φi, (36)

this operator is supersoft which means it does not give log divergent contributions to the other soft

parameters.

The other supersoft operators are:

�
d2θ

W �
αW

�α

M2
Φ†

aΦa, (37)

�
d2θ

W �
αW

�α

M2
Φ2

a, (38)

these operators give mass to the scalar components of the adjoint superfields, in particular the second

operator splits the scalar and the pseudoscalar masses squared by equal amounts. It is then important

to make sure there are no tachyonic adjoint scalars, this problem is discussed in [benakli].

2
Higher the loop number is less strong is the constraint on the Majorana mass term, and we are interested to determine

the strongest bound

12

Bounds on SUSY breaking
Scale, F <1016 (GeV) 2
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W = yuūQHu − ydd̄QLe − y
e
µµ

c
LµLe − y

e
ττ

c
LτLe + µHuHd (1)

m3/2 < 1 MeV

1

Gravitino LSP

( K.Benakli,M.GoodsellNucl.Phys. B816 (2009) 185–203,L.M Carpenter arXiv:1007.0017.)

R symmetry forbids left/right mixing. 
No Majorana mass for the neutrino 

generated

But R symmetry is not exact. Broken by anomaly mediation

R symmetric gauge mediation



EWSB

We are interested by the case of a CP neutral vacuum, and therefore we can set to zero the vacuum
expectation values of the imaginary components of all the fields present in the scalar potential.

Therefore, replacing the fields by their vevs and defining tanβ = vu
va

and v
2 = v

2
u

+ v
2
a

the following
minimation condition:
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gM

W̃
c2β (67)

where

M
2
ΦRB̃

= m
2
ΦB̃

+ M
2
ΦB̃

+ 4M
2
B̃

, (68)

M
2
ΦRW̃

= m
2
ΦW̃

+ M
2
ΦW̃

+ 4M
2
W̃

,

are the masses of the real part of the singlet and the triplet. The first step is now to make sure that the
VEV vt acquired by the triplet is below the experimental limit:

vt =
v
2

2M
2
ΦRW̃

gM
W̃

c2β < 3GeV (69)

The adjoint scalars are the heaviest particle of our spectrum as they have a mass squared of order of a
squared loop factor above times the gaugino mass. Therefore, their mass is always bigger than 1 TeV
even for gauginos at the electroweak scale, and this guarantee to be safe from big corrections from vt.

We can then conclude that we don’t have any constraints on our parameter space from this, we are free
to consider scenario both with EW scale gauginos, and with TeV region gauginos.

Therefore, the case of interest for our model is the limit in which the triplet and the singlet are very
heavy and so they decouple. Integrating them out we obtain the following potential:

VEW = (µ2 + m
2
Hu

)|H0
u
|2 + m

2
ν̃a

|ν̃a|2 −Bµ(H0
u
ν̃a + h.c.) +

g
2 + g

�2

8
(|H0

u
|2 − |ν̃a|2)2, (70)

and this is exactly the scalar potential of the MSSM or of the MRSSM with H
0
d
→ ν̃a, expect that here

we don’t have the µ contribution to the sneutrino ν̃a mass as the R invariant µ term contains just Hu. We
have then the same condition, that is in order for the potential to be bounded from below the quadratic
part should be positive along the D flat directions. This means:

2b < µ
2 + m

2
Hu

+ m
2
ν̃a

. (71)

Furthermore, the condition for electroweak symmetry breaking is:

b
2

> (µ2 + m
2
Hu

)m2
ν̃a

. (72)

As in the MSSM we don’t expect this condition to be satisfied at the input scale, but we expect the RG
contribution from the top Yukawa coupling to pushes (µ2 + m

2
Hu

) < 0. Anyway we will discuss in more
detail this in the section in which we will study the RG equations for our model, and we will also face
the fine tuning problems that might eventually occur.

Then we can rewrite the minimisation conditions in the following way:

sin β =
2Bµ

m
2
Hu

+ µ2 + m
2
La

, (73)

M
2
Z

=
|µ2 + m

2
Hu
−m

2
La

|
�

1− sin2 β
−m

2
Hu
−m

2
La
− µ

2
. (74)

17

h0
d → ν̃aSame potential of the MSSM

no mu term for the sneutrino

Rd inert doublet



Yukawa couplingLa

Σ→ TΣ†
T

†

SuperField R-charge
Hu 0
Hd 0
Ru 2
Rd 2
ψW̃ 0
ψB̃ 0
ψG̃ 0

ν̃

SuperField R-charge
Le 0
Hu 0
Rd 2
ψW̃ 0
ψB̃ 0
ψG̃ 0

SuperField R-charge
Q 1
u

c 1
d

c 1
e
c 2

µ
c 1

τ c 1
Lµ 1
Lτ 1
Le 0
Hu 0
Rd 2
ψW̃ 0
ψB̃ 0

W = yuHuQu
c + ydHdQd

c + ylHdLl
c

µHuHd

µRuHd + µRdHu

jjjjj

LaLal
c
a

3

there is just this PQ breaking terms and not others? can i related to some UV PQ breaking unknown
physics which generate just it?

In order to understand how the Bµ µ problem is solved , we should first show that this superpotential
does not generate any dangerous contributions to the operators in eq.(??), that is we should show that it
does not generate a one loop contribution for the µ and/or the Bµ terms. In order to do that we consider
the couplings in eq.(??) as superfields and then consider the extra symmetries the superpotential posses,
that is:

(1) U(1)Φ all the superfields are neutral except Φ, and Φ̄ which have charge ±1,

(2) U(1)S all the superfields are neutral except S, and S̄ which have charge ±1,

(3) U(1)N all the superfields are neutral except N, and N̄ which have charge ±1.

The first symmetry, U(1)S , forbids any contribution to the effective operator
�

d
4θ X†

M HuHd : indeed
through the terms in the superpotential WµBµ is impossible to make it neutral under this symmetry.
Furthermore, the coefficient of the effective operator in eq. is constrained to be Bµ ∼ λ̃1λ∗2λ

2 which
means it will be generated at one loop.

Having established that the effective operators of eq.(??) does not lead to unnatural contribution to
the µ, and the Bµ terms we can focus on the contribution from the operators in eq.(51).

The µ term is generated from the one loop diagram in fig., and it is given by:

µ ∼ λλ1

16π2

F
2

MT M
2
S

∼ 1
16π2

F

MT
∼ EW, (53)

as MS ∼
√

F . The Bµ term is instead generated at two loops by the diagram in fig., and it is:

Bµ ∼
λ̃1λ2λ2

2

(16π2)2
F

4

M
2
T M

4
1

∼ (EW )2. (54)

Figure 6: One loop contribution to the effective operator
�

d
4θ D2(X†X)

M HuHd which generates the µ

term.

Summarising this mechanism allows to generate the µ term at one loop, and the Bµ together with
the scalar masses at two loop. In order to not have fine tuning problems we have also to assume that

F
16π2 ∼ EW. We will discuss in more detail this point when we will consider the spectrum of the model
in the following section.

4.2 Yukawa coupling

The R-symmetry forbids to write down in the superpontential the Yukawa coupling for the lepton of
flavor a, which therefore needs to be generated by the SUSY breaking sector. The effective operator
which generates it is:

�
d
4θ

M
X

†
H

†
uLal

c
a, (55)
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null
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The Yukawa is then:

ya =
CaF

M2
, (56)

and it is important to stress out that the effective operator in eq.(55) does not lead to other interaction
terms except the Yukawa coupling.

In order to generate this effective operator is necessary again to enlarge the messenger sectors intro-
ducing new superfields which should couple with the SM superfields contained in eq.(). We introduce
then two doublets messengers Xu, and Xd with the same gauge numbers of Hu and Hd respectevely, but
different R charge: Xu has Rcharge 2, while Xd 0, the superpotential is then:

Wya = MXXuXd + y1XdLal
c

a
+ y2HuXdΦ̄ + y3XuXdΦ, (57)

where Φ is the messenger field of eq.(53), and MX ∼MT . The effective operator of eq.(53) receive then
contribution at one loop, and the yukawa coupling is:

ya ∼ λ
y1y2y3

16π2

F

M
2
T

∼ y1y2y3
EW

MT

, (58)

as we know from the previous section that naturalness requires F

16π2MT
∼ EW.

The Yukawa coupling generated in this way is very small as it suppressed by the loop factor, and
by the condition F < M

2
T
. This does not represent a problem when a = e or a = µ as the Yukawa in

this case are anyway extremely small for all the possible values of va. We should instead consider more
carefully the case a = τ. Indeed in this case yτ ∼ 1

16π2 which requires F ∼ M
2
T

in order for eq.(58) to
reproduce the correct value. So, to implement the taunic lepton number as an R symmetry it is necessary
to consider a very low MT ∼ 105 GeV supersymmetry breaking scenario.

5 Electroweak symmetry breaking

In the present section we will study how electroweak symmetry breaking is realised in our model. First
we should understand which are the fields to include in the minimisation of the scalar potential. We can
set to zero the VEV of Hd as long as it has Hd big positive mass squared together with the VEV of the
other sfermions. We need instead to include the scalar component of the adjoint superfields Φ

B̃
, and

Φ
W̃

as they acquire a non zero VEV, and in particular we need to make sure that the triplet Φ
W̃

does
not get a VEV bigger than the limit set by EWPM, that is vt < 1GeV.

The electroweak scalar potential receive contributions from three source:

VEW = Vgauge + VW + Vsoft, (59)

the first is the contribution from the gauge kinetic term which is given by:
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where we kept only the neutral components, the second contribution comes instead from the superpo-
tential, and it just contains a mass term for the up type higgs:
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The third one contain the soft SUSY breaking terms:

Vsoft = m
2
ΦB̃

Φ†
B̃

Φ
B̃

+ m
2
ΦW̃

Φ†
W̃

Φ
W̃

+ M
2
ΦB̃

(Φ2
B̃

+ cc) + M
2
ΦW̃

(Φ2
W̃

+ cc)+ (62)

m
2
Hu

|H0
u
|2 + m

2
La

|ν̃2
a
|−Bµ(H0

u
ν̃a + h.c.).

Then putting the three terms together the scalar potential is given by:
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