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Minimal Length Uncertainty Relation

Start by deforming the commutator algebra
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This results in a2 minimum in Ax.

AXAP= i(1+ BAP) — AX=hv/p



Uncertainty graph




Test System: Harmonic Oscillator

Use standard Hamiltonian
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Choose representation and modify
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Harmonic Oscillator (continued)

The energy eigenvalues and eigenvectors
can be solved for exactly.
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Coherent States

Add impulse term to the Hamiltonian
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Time evolve the ground state
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State is shifted in p



Shifted Ground State




Energy Eigenstates




Resolution

To avoid divergent uncertainties, implement
a cutoff.
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