Dark matter in Warped Universal Extra Dimensions

Anibal D. Medina 1

¹ Department of Physics University of California Davis

May 9th-11th / Pheno 2011 Symposium

Outline

- Motivation
- 2 Backgrounds with Z₂ Symmetry
- KK-Radion Dark Matter
 - Freeze-out KK-Radion DM ($\Lambda_r \approx 2 \text{ TeV}$)
 - Coannihilations with t' ($\Lambda_r \approx 10 100 \text{ TeV}$)
 - KK-radion as a SuperWIMP ($\Lambda_r > 100 \text{ TeV}$)
- Direct and Indirect Detection
- Conclusions

Motivation

- The possible link between dark matter (DM) and particle physics phenomena at the TeV scale has prompted many models with a suitable DM candidate in the TeV mass range such as Supersymmetry with R-parity, little Higgs with T-parity among others.
- In extra dimensional theories the best known example of a theory that naturally provides a DM candidate is Universal Extra Dimensions (UED).
- We seek to construct a minimal scenario that combines the "nice" features of UED and RS.
- We study a Z₂ warped geometry, addressing the stabilization of the extra dimension.
- Through the stabilization mechanism, we dynamically generate a mass for the lightest radion even state and the lightest odd excitation of the radion field becomes our DM candidate, with a mass parametrically smaller than the KK scale.

Backgrounds with Z₂ Symmetry

- Consider a 5D real scalar Φ minimally coupled to gravity,
- Interest in the stabilization of the extra dimension leading to a symmetric background about y = 0, $y \in [-L, L]$.
- Solve the coupled gravity/scalar system taking into account the backreaction of the scalar VEV on the geometry (generate a mass for the zero mode radion).
- Restrict to backgrounds with 4D Lorentz symmetry,

$$ds^2 = e^{-2A(y)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} - dy^2$$
, (1)

An approximate solution is given by (IR-UV-IR)

$$\phi(y)/\phi_0 \approx s_\phi y/L$$
, $A(y) \approx s_A k y^2/(2L) = k_{\text{eff}} y^2/(2L)$, (2)

• For the radion we find that its profile is given by $F_0 \approx e^{2(A(y)-A(L))}$, and that its mass scales as,

$$m_0 pprox rac{2}{\sqrt{k_{eff}L}} k_{eff} e^{-A(L)} pprox 0.25 \, \tilde{k}_{eff} \,,$$
 (3)

 Profiles that are localized near the IR branes have exponentially degenerate mass for odd and even modes. • Typical spectrum in this kind of scenario.

The KK-Radion as a WIMP

Radion interactions are non-renormalizable and controlled by the decay constant

$$\Lambda_r = \sqrt{\frac{3M_5^3}{k_{\rm eff}^3}} imes \tilde{k}_{
m eff}.$$

- : Allows to interpolate between RS-like "strong warping" scenarios (when $k_{\rm eff} \sim M_5$) and "UED-like" scenarios (when $k_{\rm eff} \ll M_5$).
- In the strong warping scenario, KK-radions can annihilate into SM fermion (mainly top) pairs and Higgses (annihilation into massless gauge bosons is suppressed),

Figure: Annihilation into fermions

Figure: Annihilation into Higgs and longitudinal gauge bosons

• Contours of constant $\Omega_{r'}h^2$ in the $m_{r'}-\Lambda_r$ plane

• Correct relic density of $\Omega_{r'}h^2\approx 0.1$ can be obtained for natural values of the parameters ($\Lambda_r\approx 3.5$ TeV, $m_{r'}\approx 300$ GeV).

Coannihilations with t'

• If $\Lambda_r \sim 100$ TeV and $m_{t'} \gtrsim m_{r'}$, coannihilations with the strongly interacting t' can become dominant and the $\Omega_r h^2$ can be completely controlled by QCD.

• WMAP constraint on the degree of degeneracy, $\Delta = (m_{t'} - m_{r'})/m_{r'}$ as a function of $m_{r'}$

KK-Radion as a Non-Thermal Relic

- Situation arises when $\Lambda_r \gg k_{eff}$ (superweak radion coupling).
- Assume that $T_R \lesssim T_c \approx 1$ TeV, with T_c the critical temperature for the deconfinement/confinement phase transition. Otherwise, the universe trapped eternally in the false vacuum.
- Production channels from scattering and decays: $gq^j \to r'q^k$, $f^j \to r'f^k$, $V^{j,a}_{j} \to r'V^{k,b}_{j}$

Figure: Production through decays

Figure: Production through scattering

• Decays are the dominant production mechanism. We study formally up to $T_R \sim 10 k_{\rm eff}$ (4D cut-off of KK-theory).

Figure: WMAP constraint in the Λ_R - T_R plane in Log scale. Figure: WMAP constraint in the Λ_R - T_R up to $T_R = 10 \text{ TeV}$

BBN constraints are satisfied as long as T_R ≤ few hundred GeV.

Direct Detection

- Consider brane Higgs-Radion mixing term, $\frac{1}{2} \left[\delta(y-L) + \delta(y+L) \right] \sqrt{g_{\text{ind}}} \, \xi \mathcal{R}_4 H^{\dagger} H$.
- Interactions relevant for scattering of DM against nuclei are $r_- h_+ h_-$ and $r_+ h_- h_-$.

Figure: Contours of constant $\sigma_{\phi_{\rm DM}N\to\phi_{\rm DM}N}$ in the ξ - m_{r_-} plane for $\Lambda_r=2~{\rm TeV}$

• There is a region where the DM is mostly r_- , with a sizable nucleon cross section (below the dashed line of $|U_{r_-,L}|^2 = 0.9$).

Indirect detection

- Focus on the photon flux from KK-radion annihilations (other signals are small).
- Consider the brane localized operator $[\delta(y+L)+\delta(y-L)]\sqrt{g_{ind}}(\eta/8\Lambda_5^3)K^2F_{\mu\nu}F^{\mu\nu}$, where Λ_5 is the 5D cutoff and K is the trace of the extrinsic curvature.
- Reduction to 4D leads to $-\frac{e^2\kappa}{8\Lambda^2} r'^2 F_{\mu\nu} F^{\mu\nu}$ with $e^2\kappa \approx 64\eta/(k_{\rm eff}L) \times (k_{\rm eff}/\Lambda_5)^3$, with η as large as $3/2\pi$.

Figure: Continuum photon flux and 2γ -line signal from KK-radion annihilation at the center of the galaxy. For the line signal, we show three detector energy resolutions: 10% (black line), 5% (blue line) and 0.5% (red line)

Conclusions

- We discussed a novel scenario where the warped geometry provides the symmetry for a suitable dark matter candidate which we identify after stabilization of the extra dimension with lightest odd radion mode (the LKP).
- Depending on the value of the decay constant Λ_r , standard freeze out DM ($\Lambda_r \approx 2$ TeV), coannihilation ($\Lambda_r \approx 10-100$ TeV or non-thermal ($\Lambda_r \gg 100$ TeV) scenarios arise.
- In the presence of mixing with the Higgs sector → possible direct detection signals.
- Indirect detection signals that may be probed by FERMI-LAT.