Gauge Coupling Unification in Heterotic String Models with Gauge Mediated SUSY Breaking

Phys.Rev. D83 (2011) 075008 - arXiv:1101.1976 [hep-ph]; Work with Prof. Stuart Raby

Archana Anandakrishnan

The Ohio State University

May 9, 2011

Pheno 2011 - Madison, WI

Motivation

In string theories with compactified extra-dimensions, there generically exist extra non-standard model particles, usually called "exotics".

Motivation

In string theories with compactified extra-dimensions, there generically exist extra non-standard model particles, usually called "exotics".

To mediate SUSY breaking with vector-like "exotic" particles arising from heterotic string theory, and produce a "consistent" low-energy spectrum.

• Search for MSSM spectrum at low energies starting with $E_8 \times E_8$ heterotic string models compactified on the orbifold, T^6/\mathbb{Z}_6

¹O. Lebedev, H. P. Nilles, S. Raby, S. Ramos-Sanchez, M. Ratz, P. K. S. Vaudrevange and A. Wingerter, Phys. Lett. B 645, 88 (2007)

- Search for MSSM spectrum at low energies starting with $E_8 \times E_8$ heterotic string models compactified on the orbifold, T^6/\mathbb{Z}_6
- Look for GUTS with the Standard Model Gauge group embedded

$$E_8\supset E_6\supset SO(10)\supset SU(5)\supset G_{SM}$$

¹O. Lebedev, H. P. Nilles, S. Raby, S. Ramos-Sanchez, M. Ratz, P. K. S. Vaudrevange and A. Wingerter, Phys. Lett. B 645, 88 (2007)

- Search for MSSM spectrum at low energies starting with $E_8 \times E_8$ heterotic string models compactified on the orbifold, T^6/\mathbb{Z}_6
- Look for GUTS with the Standard Model Gauge group embedded

$$E_8\supset E_6\supset SO(10)\supset SU(5)\supset G_{SM}$$

• Spectrum: Three families + Vector-like "exotics"

¹O. Lebedev, H. P. Nilles, S. Raby, S. Ramos-Sanchez, M. Ratz, P. K. S. Vaudrevange and A. Wingerter, Phys. Lett. B 645, 88 (2007)

- Search for MSSM spectrum at low energies starting with $E_8 \times E_8$ heterotic string models compactified on the orbifold, T^6/\mathbb{Z}_6
- Look for GUTS with the Standard Model Gauge group embedded

$$E_8\supset E_6\supset SO(10)\supset SU(5)\supset G_{SM}$$

- Spectrum: Three families + Vector-like "exotics"
- 15 models with promising phenomenology.

¹O. Lebedev, H. P. Nilles, S. Raby, S. Ramos-Sanchez, M. Ratz, P. K. S. Vaudrevange and A. Wingerter, Phys. Lett. B 645, 88 (2007)

Gauge Coupling Unification 2

• Gauge Coupling Unification was studied in 2 of these 15 models.

Model 1 and Model 2A

²Ben Dundee, Stuart Raby, Akin Wingerter - Phys.Rev.D78:066006,2008

Gauge Coupling Unification ²

• Gauge Coupling Unification was studied in 2 of these 15 models.

Model 1 and Model 2A

• This required some of the vector-like exotics to be massive around $10^9 - 10^{13}$ GeV.

²Ben Dundee, Stuart Raby, Akin Wingerter - Phys.Rev.D78:066006,2008

Gauge Coupling Unification 2

• Gauge Coupling Unification was studied in 2 of these 15 models.

Model 1 and Model 2A

- This required some of the vector-like exotics to be massive around $10^9 10^{13}$ GeV.
- Solutions were constrained by the value of proton lifetime in these models.

$$au(p \ \pi^0 e^+) \ \gtrsim \ 10^{34} {
m yr}^*$$

* Current bound from Super Kamikande.

²Ben Dundee, Stuart Raby, Akin Wingerter - Phys.Rev.D78:066006,2008

 \bullet $\vec{n}=(n_3,n_2,(n_1,n_1'))$ defines the 'light' exotic matter content of the theory.

$$n_3 \times \left[(3,1)_{1/3,*} + (\overline{3},1)_{-1/3,*} \right] + n_2 \times \left[(1,2)_{0,*} + (1,2)_{0,*} \right] + n_1 \times \left[(1,1)_{1,*} + (1,1)_{-1,*} \right]$$

• $\vec{n} = (n_3, n_2, (n_1, n_1'))$ defines the 'light' exotic matter content of the theory.

$$n_3 \times \left[(3,1)_{1/3,*} + (\overline{3},1)_{-1/3,*} \right] + n_2 \times \left[(1,2)_{0,*} + (1,2)_{0,*} \right] + n_1 \times \left[(1,1)_{1,*} + (1,1)_{-1,*} \right]$$

• M_{EX1} - Mass scale of the triplet exotics.

• $\vec{n} = (n_3, n_2, (n_1, n_1'))$ defines the 'light' exotic matter content of the theory.

$$n_3 \times \left[(3,1)_{1/3,*} + (\overline{3},1)_{-1/3,*} \right] + n_2 \times \left[(1,2)_{0,*} + (1,2)_{0,*} \right] + n_1 \times \left[(1,1)_{1,*} + (1,1)_{-1,*} \right]$$

- M_{EX1} Mass scale of the triplet exotics.
- M_{EX2} Mass scale of the doublet exotics.

• $\vec{n} = (n_3, n_2, (n_1, n_1'))$ defines the 'light' exotic matter content of the theory.

$$n_3 \times \left[(3,1)_{1/3,*} + (\overline{3},1)_{-1/3,*} \right] + n_2 \times \left[(1,2)_{0,*} + (1,2)_{0,*} \right] + n_1 \times \left[(1,1)_{1,*} + (1,1)_{-1,*} \right]$$

- M_{EX1} Mass scale of the triplet exotics.
- M_{EX2} Mass scale of the doublet exotics.
- \bullet M_C The compactification scale of the extra-dimensions.

Heterotic Theory on Orbifold

^{*}Figure not drawn to scale.

4D MSSM

^{*}Figure not drawn to scale.

4D MSSM

^{*}Figure not drawn to scale.

Gauge Coupling Unification

Gaugino Masses

• The gauginos obtain mass at one loop from the exotics:

$$M_i = b_i^{\mathsf{EX3}} \; rac{lpha_i}{4\pi} rac{F^{\phi}}{M_{\mathsf{EX1}}} + b_i^{\mathsf{EX2}} \; rac{lpha_i}{4\pi} rac{F^{\phi}}{M_{\mathsf{EX2}}}$$

ignoring the sub-dominant contribution from the gravitino.

$$\frac{F^{\phi}}{M_{EX}} >> m_{3/2}$$

$$b^{EX3} = (n_3, 0, \frac{n_3 + 3n_1}{10})$$
 $b^{EX2} = (0, n_2, \frac{3n'_1}{10})$

Scalar Masses

• The scalars obtain mass at two-loops:

$$m_{\phi_{i}}^{2} = m_{3/2}^{2} + 2\left(b_{3}^{EX3} \frac{\alpha_{3}}{4\pi} \frac{F^{\phi}}{M_{EX1}}\right)^{2} C_{3}(i) + 2\left(b_{2}^{EX2} \frac{\alpha_{2}}{4\pi} \frac{F^{\phi}}{M_{EX2}}\right)^{2} C_{2}(i)$$
$$+ 2\left(\frac{\alpha_{1}}{4\pi} \left(b_{1}^{EX3} \frac{F^{\phi}}{M_{EX1}} + b_{1}^{EX2} \frac{F^{\phi}}{M_{EX2}}\right)\right)^{2} C_{1}(i) + dQ_{a}^{X} M_{2}^{2}$$

• $dQ_a^X M_2^2$ is a D - term contribution ³ from an anomalous $U(1)_X$ that gives a contribution proportional to GMSB.

³S. Raby and K. Tobe, Nucl. Phys. B539, 3 (1999)

Precision Unification?

Standard SUSY breaking scenarios require a -4% threshold corrections at the GUT scale.

$$\alpha_i^{-1}(\mu) = \alpha_{GUT}^{-1} + \frac{b_i}{2\pi} log \frac{M_{GUT}}{\mu} - \alpha_{GUT}^{-1} \frac{\epsilon_3}{(1+\epsilon_3)} \delta_{i3}$$

Effect of ϵ_3

• We study the effect of threshold corrections on the spectrum of exotics as well as the low energy spectrum.

The figure represents the correlation for one particular model with $\vec{n} = (4, 2, (2, 1))$

Two Cases

Observable	Case 1	Case 2
$m_{3/2}$	4 TeV	$10 \mathrm{TeV}$
d	0	5
M_S	6.04×10^{17}	6.05×10^{17}
M_C	1.2×10^{16}	1.2×10^{16}
M_{EX1}	5.03×10^{13}	1.10×10^{14}
M_{EX2}	1.69×10^{13}	8.54×10^{13}
M_{GUT}	2.5×10^{16}	2.0×10^{16}
ϵ_3	-2.5 %	0 %
an eta	7	4
mu	-206.217	-1932.930

MSSM Spectrum - Case 1

 $m_{3/2} = 4 \text{ TeV}, d = 0, \epsilon_3 = -2.5 \%$

MSSM Spectrum - Case 2

 $m_{3/2} = 10 \text{ TeV}, d = 5, \epsilon_3 = 0 \%$

Summary

• We have a self-consistent spectrum generated from heterotic string theory with vector-like "exotic" particles mediating SUSY breaking.

Summary

- We have a self-consistent spectrum generated from heterotic string theory with vector-like "exotic" particles mediating SUSY breaking.
- The gaugino masses in the MSSM spectrum depend on the threshold corrections at the GUT scale.

Summary

- We have a self-consistent spectrum generated from heterotic string theory with vector-like "exotic" particles mediating SUSY breaking.
- The gaugino masses in the MSSM spectrum depend on the threshold corrections at the GUT scale.
- Interesting Phenomenology Unique signatures at colliders!!