SUSY Higgs Searches with ATLAS

Phenomenology 2011 Symposium

University of Wisconsin at Madison May 9-11, 2011

Børge Kile Gjelsten University of Oslo

(on behalf of the ATLAS collaboration)

Outline

- ATLAS detector, datataking 2010
- Higgs in SUSY
- I: MSSM: Neutral Higgs
- II: MSSM: Charged Higgs
- III: NMSSM: $a_1 \rightarrow \mu \mu$
- Summary

ATLAS, datataking 2010

ATLAS (A Toroidal Lhc ApparatuS)

- General-purpuse detector
- Traditional build
 - tracking detectors
 - calorimeters
 - muon spectrometer
- Good coverage

2010 was a great year

- Calibrating ATLAS at 7 TeV
- "Rediscovering" the SM. The first W, Z, top candidates observed one year ago
- Lots of data in uncharted territory, 35-40 pb⁻¹ for analyses

Børge Kile Gjelsten, Oslo U.

Higgs sector in MSSM

<u>MSSM</u>

(Minimal Supersymmetric Standard Model):

- Why add supersymmetry to SM?
 - (is doable)
 - cure hierarchy problem ...
 - maybe get Dark Matter candidate ...
 - gauge unification at high scale ...
 - symmetry needed in String Theory...
 - ...
- Every SM field (dof) gets a SUSY partner (dof) with spin differing by ¹/₂
 - particle content doubled (and more)
- But SUSY must be broken ...
- Breaking details unknown:
 - add all allowed couplings...
 - introduces 105 free parameters
 - (if R-parity conserved)

Higgs sector in the MSSM

- *Two* complex Higgs doublets needed
 - 8 dof 3 to feed Z and W^{\pm} = 5 scalar fields
 - 2 neutral CP-even: h and H
 - 1 neutral CP-odd: A
 - 2 charged: H⁺ and H[−]
- Governed by only 2 parameters at tree level
 - m_{A} and $tan\beta$ (ratio of the two Higgs doublet VEVs)
- For **A** somewhat heavier than **W**:
 - h decoupled (below 135 GeV)
 - A, H, H[±] degenerate
- Subgroup of the 2HDM: type II
 - One doublet gives masses to up-type fermions
 - another gives masses to down-type fermions
- Radiative corrections important for h
 - $\mathbf{m}_{\mathbf{h}}$ perturbed from below $\mathbf{m}_{\mathbf{z}}$ to within 135 GeV
 - sensitive to stop mixing (top mass, ..)
 - (m_h-max scenario)

MSSM Higgs: rise and fall

Production mechanisms:

- I: Neutral Higgses:
 - direct
 - in association with b's (esp. for larger tanβ)

For **A** and **H**: σ prop. to $\sim (tan\beta)^2 \rightarrow$ enhancement for large $tan\beta$

II: Charged Higgs:

• $m(H^{\pm}) < m(t)$: in top decay mainly

And in SUSY cascades

- Extra activity can make such channels very favourable (large MET, hard jets)
- Not considered further here

Decays

- Higgs fields couple to mass, general preference: decay into heaviest available particles
- MSSM vs SM
 - $tan\beta$ enters the couplings
 - Decay into dibosons strongly suppressed
 - $A \rightarrow ZZ/WW$: absent
 - $H \rightarrow ZZ/WW$: suppressed by $cos(\alpha-\beta)$
 - $h \rightarrow ZZ/WW$: kinematically closed
 - Enhanced decay into down-type fermions
 - Enhanced decay into third generation
- Neutral, A / H / h
 - \rightarrow bb often dominant (but exp. difficulty)
 - $\rightarrow \tau \tau$ significant: can reach 10%
 - $\rightarrow \mu\mu$ very small (~0.03%), but distinct exp. signature
- Charged, H[±]
 - \rightarrow tb dominant if H[±] is heavy
 - $\rightarrow \tau \nu$ dominant if H[±] is light
 - $\bullet \ \to \text{cs subdominant if } H^{\pm} \text{ is light}$

I: A/H/h $\rightarrow \tau\tau$ (#1) [Data]

ATLAS-CONF-2011-024

36.1 pb⁻¹

Search in the semi-leptonic channel: $\tau_{h} \tau_{e/u}$

• BR($\tau\tau \rightarrow \tau_{h} \tau_{e/u}$) = 46%

Event selection

- N_e + N_μ = 1, p_T > 20/15 GeV (e/μ)
- N_T = 1, p_T^{T,vis} > 20 GeV
- opposite-sign
- $E_{T}^{\text{miss}} > 20 \text{ GeV}$ (have 3 v's)
- $M_{T} < 30 \text{ GeV}$ (to suppress W, tt, t)

where $M_{\rm T} = \sqrt{2p_{\rm T}^{\rm e/\mu}E_{\rm T}^{\rm miss}(1-\cos\Delta\phi)}$

For Higgs events the selection efficiency is

- 3% for mA = 120 GeV
- 8% for mA = 200 GeV

SM Backgrounds

W(→Iv) + jets

- I=e/µ/ τ , jet misidentified as $\tau_{_{h}}$
- Large cross-section

$Z/\gamma^*(\rightarrow II)$ + jets

- II=ττ: irreducible
- esp. problematic if Higgses light
- II=ee/µµ: e/µ/jet misidentified as $\tau_{_h}$

tt, single-t, diboson, QCD

less important

Cross-sections:

- Signals (m_h-max scenario, $\tan\beta = 20$, m_A = 120/200 GeV)
- SM backgrounds

Process	Cross section × BR [pb]
$bbA/H/h, A/H/h \rightarrow \tau^+ \tau^- \rightarrow \ell \tau_h, m_A = 120 \text{ GeV}$	3.57/0.33/3.43
$bbA/H/h, A/H/h \rightarrow \tau^+ \tau^- \rightarrow \ell \tau_h, m_A = 200 \text{ GeV}$	0.56/0.56/0.03
$gg \to A/H/h \to \tau^+ \tau^- \to \ell \tau_h, m_A = 120 \text{ GeV}$	2.25/1.01/1.87
$gg \rightarrow A/H/h \rightarrow \tau^+ \tau^- \rightarrow \ell \tau_h, m_A = 200 \text{ GeV}$	0.14/0.17/0.50
$W \rightarrow \ell + \text{jets} \ (\ell = e, \mu, \tau)$	10.46×10^3
$Z/\gamma^* \rightarrow \ell^+ \ell^- + \text{jets} \ (m_{\ell\ell} > 10 \text{ GeV})$	4.96×10^{3}
$t\bar{t}$	164.6
Single- t (t -, s - and Wt -channels)	58.7, 3.9, 13.1
Di-boson (WW, WZ and ZZ)	46.2, 18.0, 5.6

I: A/H/h $\rightarrow \tau\tau$ (#2) [Data]

SM MC predictions consistent with data

- in both channels, $\tau_{_{h}}e$ and $\tau_{_{h}}\mu$
- Data: 74+132 = 206
- SM MC-only (w/o QCD): 70(±3)+137(±4) = 207(±6) [see table, statistical error only]

Datadriven SM estimates gives similar numbers:

 SM: 195 ± 33 (stat and syst err) [breakdown consistent with MC-only estimation]

Higgs signal would add 43/19 events (tan β =40, m_A=120/200 GeV)

		Electron channe	el
	$N_{\tau} = 1$	$E_{\rm T}^{\rm miss} > 20 { m GeV}$	$M_{\rm T} < 30 { m ~GeV}$
Observed data	1413	581	74
Total MC expectation (w/o QCD)	1350 ± 10	700 ± 10	70±3
W+jets	710±10	590±10	26±2
Di-boson	3.61 ± 0.05	2.68 ± 0.05	0.26 ± 0.01
Single- <i>t</i>	4.4 ± 0.1	3.9 ± 0.1	0.40 ± 0.06
$t\bar{t}$	26.3 ± 0.4	23.8 ± 0.4	2.8 ± 0.1
$Z/\gamma^* \rightarrow e^+e^-, \mu^+\mu^-$	451±7	41±2	9.8 ± 0.9
$Z/\gamma^* ightarrow au^+ au^-$	150 ± 4	40 ± 2	30±2
$A/H/h$ signal ($m_A = 120$ GeV, tan $\beta = 40$)	62±1	23.4±0.6	17.9 ± 0.5
$A/H/h$ signal ($m_A = 200$ GeV, $\tan \beta = 40$)	16.4 ± 0.2	9.7 ± 0.2	7.3 ± 0.2
		Muon channel	
	$N_{\tau} = 1$	$E_{\rm T}^{\rm miss} > 20 { m GeV}$	$M_{\rm T} < 30 { m ~GeV}$
Observed data	1627	841	132
Total MC expectation (w/o QCD)	1680 ± 20	1050 ± 10	137±4
W+jets	1030 ± 10	860 ± 10	41±2
Di-boson	4.88 ± 0.07	3.93 ± 0.06	0.42 ± 0.02
Single- <i>t</i>	5.7 ± 0.1	5.1 ± 0.1	0.65 ± 0.05
$t\bar{t}$	33.2 ± 0.4	30.0 ± 0.4	3.9 ± 0.1
$Z/\gamma^* ightarrow e^+e^-, \mu^+\mu^-$	253±5	48±2	11±1
$Z/\gamma^* ightarrow au^+ au^-$	350 ± 20	97±3	81±3
$A/H/h$ signal ($m_A = 120$ GeV, $\tan\beta = 40$)	103±1	42.9±0.9	35.4±0.8
$A/H/h$ signal ($m_A = 200$ GeV, $\tan \beta = 40$)	23.8 ± 0.3	14.6 ± 0.2	11.4 ± 0.2

Børge Kile Gjelsten, Oslo U.

I: A/H/h $\rightarrow \tau\tau$ (#3) [Data]

Exclusion limits

- m_{A} -tan β plane, m_{h}^{max} scenario
- based on $m_{_{\scriptscriptstyle TT}}^{}^{_{\scriptscriptstyle Vis}}$ distribution
- Region above "Observed (CLs+b, PCL)" is excluded at 95% CL
- Extends exclusions by LEP and Tevatron (NB: different statistical methods used)
- CLs limit shown for direct comparison with Tevatron

I: A/H/h $\rightarrow \mu\mu$ [MC, 1fb⁻¹]

ATLAS-PHYS-PUB-2010-009

For neutral Higgses to $\mu\mu$ no search results have have been published yet. Show the MC prospects for 1 fb⁻¹. Large $tan\beta$ enhances coupling to down-type fermions

- μμ-channel BR enhanced
 - still very low BR: ~0.04% (at tanβ=40)
 - but very clean
- production in association with b is enhanced:
 - can require **b** in event selection

Exclusion plots in mA-tanβ plane

- region above curves (to be) excluded at 1 fb-1
- left: ≥1 b's , right: 0 b's
- dashed: syst. uncertainty on bck and signal not included
- full-line: syst. uncertainty on bck and signal included
- b-tag selection (left) strongest

[results based on rescaling 10 TeV analysis]

ATLAS-CONF-2011-051

II: $H^{\pm} \rightarrow \tau_{h} \nu$ [Data]

"Data-driven estimation of the background to charged Higgs boson with hadronic taus"

Hadronic tau, hadronic W

- $b\tau_{h\nu} bqq \leftrightarrow 1$ taujet, 2b, 2q, 2v
- largely datadriven SM estimates
- good agreement so far

m_T [GeV]

Hadronic tau, leptonic W

- $b\tau_{h\nu} bl\nu \leftrightarrow 1$ taujet, 2b, 1l, 3ν
- largely datadriven SM estimates
- good agreement so far

E_T^{miss} [GeV]

Expected			Observed			Expected				Observed			
	True τ jets	Jet $\rightarrow \tau$ fakes	$e \rightarrow \tau$ fakes	QCD	Sum	Data			True τ jets	Jet $\rightarrow \tau$ fakes	$e \rightarrow \tau$ fakes	Sum	Data
All events $m_T > 70 \text{ GeV}$	$10.8 \pm 3.1^{+3.2}_{-2.4} \\ 4.7 \pm 1.3^{+1.4}_{-1.1}$	$1.7 \pm 0.2 \pm 0.3$ $1.2 \pm 0.2 \pm 0.2$	$\begin{array}{c} 1.1 \pm 0.0 \pm 0.4 \\ 0.7 \pm 0.0 \pm 0.3 \end{array}$	$18.8 \pm 6.2 \pm 3.0 \\ 11.3 \pm 3.7 \pm 1.7$	$32 \pm 9 \pm 7$ $18 \pm 5 \pm 4$	33 17	Ev	rents	$6.9 \pm 0.3 \pm 1.4$	$7.9 \pm 1.1 \pm 1.6$	$0.65 \pm 0.01 \pm 0.04$	$15.5 \pm 1.4 \pm 3.0$	11

Børge Kile Gjelsten, Oslo U.

II: $H^{\pm} \rightarrow \tau_{e/\mu} \nu$ [Data]

"Study of discriminating variables for charged Higgs boson searches with leptons"

Leptonic tau, hadronic W

- $b\tau_{e/u} v bqq \leftrightarrow 1l$, 2b, 2q, 3v
- SM estimates from MC only
- Distributions of discriminating variables
 - fair agreement with SM
 - signal alters the distributions
 - more luminosity needed to distinguish

Leptonic tau, leptonic W

- $b\tau_{e/u} v blv \leftrightarrow 2l$, 2b, 4v
- similar plots (not shown)
- exclusion plots for 1 fb⁻¹ MC study

ATLAS-PHYS-PUB-2010-009

Exclusion limits in terms of BR(t \rightarrow H[±]b) in di-leptonic channel [Simulation]

(assuming BR(H[±] \rightarrow τ ν)=1)

11 / 28

II: $H^{\pm} \rightarrow cs [MC, 1fb^{-1}]$

No search results yet. Look at MC prospects for 1fb⁻¹.

For $m(H^{\pm}) < m(top)$:

- H[±] produced in ttbar decays
- $H^{\pm} \rightarrow cs$ subdominant, relevant at low $tan\beta$ where it can reach a few percent
- $tt \rightarrow bH^{\pm} bW \rightarrow bcs blv$

Event selection:

- 1 e/µ with pT > 20 GeV
- ≥4 jets with pT > 20 GeV, two **b**-tagged
- E_T^{miss} > 20 GeV

Exclusion limits in terms of BR(t \rightarrow H[±]b) [assuming BR(H[±] \rightarrow cs)=1]

1 fb-1 estimates of SM bck and signals: • BR(H± → cs) = 10% assumed • SM fully dominated by ttbar					
	no cut	all cuts			
$H^+ \rightarrow c\bar{s}, 90 \text{ GeV}$	9.5×10^{3}	148			
$H^+ \rightarrow c\bar{s}, 110 \text{ GeV}$	9.5×10^{3}	144			
$H^+ \rightarrow c\bar{s}$, 130 GeV	9.5×10^{3}	98			
$H^+ \rightarrow c\bar{s}, 150 \text{ GeV}$	9.5×10^{3}	56			
SM $t\bar{t}$, not all hadronic	87.4×10^{3}	1370			

Børge Kile Gjelsten, Oslo U.

III: NMSSM: $a_1 \rightarrow \mu\mu$ (#1) [Data]

NMSSM

(Next-to-Minimal Supersymmetric Standard Model)

- Add complex singlet scalar field S to the MSSM
 - generates μ-term as VEV of S [solving the μ-problem of the MSSM]
- Extended Higgs sector:
 - 3 CP-even higgses: h₁, h₂, h₃
 - 2 CP-odd higgses: **a**₁, a₂
 - 2 charged higgses: h⁺, h⁻
- Phenomenology may be significantly altered:
 - a₁ can be very light, e.g. 10 GeV
 - $h \rightarrow a_1 a_1$ can be dominant
 - * $H^{\pm} \rightarrow a_{_1} W^{\pm}$ can obscure standard channels
- "Ideal Higgs scenario" of the NMSSM
 - $m(a_1) < 2m_B$: b's absent from Higgs decays
 - $(a_1 \rightarrow \tau \tau, cc, gg \text{ preferred})$
 - $a_1 \rightarrow \mu\mu$: clean channel (BR ~ 0.3%)

Børge Kile Gjelsten, Oslo U.

Two relevant parameters:

• $\tan\beta$ and $\hat{\theta}_{A}$: CP-odd Higgs boson mixing angle $a_{1} = \cos\theta_{A}a_{MSSM} + \sin\theta_{A}a_{S}$

Ex.: $\sigma \times BR \sim 3 \text{ pb}$ for m(a₁)=8 GeV, tan β =10, cos θ_{A} =0.1

III: NMSSM: $a_1 \rightarrow \mu\mu$ (#2) [Data]

Event and Candidate selection :

- $\geq 2\mu$ with $p_{_T} > 4$ GeV, $|\eta| < 2.5$
- all opposite-sign muon pairs with $4.5 < m_{\mu\mu}/GeV < 14$ subjected to likelihood-ratio selection

<u>Likelihood-ratio selection :</u> [to enhance prob. that dimuons have same source]

- construct pdfs from
 - dimuon vertex fit quality (χ^2 /dof)
 - E_{T}^{cone}/p_{T} for each muon
- Signal pdf from Y(1S), 9-10 GeV [minus sideband (6, 7.5) and (11.5, 12) GeV]
- Bck/continuum pdf from "outer sideband", 4.5-5.5 and 12.5-14 GeV

Blue: simple selection Black: with Likelihood-Ratio selection

- Y-resonances clearly visible in 9-11 GeV
- Only regions 6-9 and 11-12 GeV used for a, search
- MC-signals (arbitrary normalisation) shown
- No sign of any **a**₁ resonance in data
- Can set limits

Børge Kile Gjelsten, Oslo U.

III: NMSSM: $a_1 \rightarrow \mu\mu$ (#3) [Data]

Exclusion limits:

Limits extracted with Profile-Likelihood method :

- Likelihood function defined in 50 MeV-bins in m.
- Separate fits performed in two regions, 6-11, 9-12 GeV
- Black: observed limit shown as 16% PCL (Power Constrained Limits)
 - Observed limit goes up at edges due to potential signal-cutoff
 - Trial factor of the look-elsewhere-effect is 70-90 (the increase in the probability of observing a statistical fluctuation due to the scan over mass values)
- If interpreted in terms of NMSSM, values at high tanβ and high cosθ, will be constrained

To set cross-section limits, need to determine the selection efficiency

$$\varepsilon = \varepsilon_{\rm acc} \cdot \varepsilon_{\mu\mu} \cdot \varepsilon_{\rm trig} \cdot \varepsilon_{\rm LR}$$

Børge Kile Gjelsten, Oslo U.

Summary

- 2010 has been a very good year for ATLAS
- Searches for SUSY Higgses are on track
- With 36-40 pb⁻¹ of 2010 data ATLAS has extended previous limits in two channels
 - A/H/h $\rightarrow \tau_{h} \tau_{e/\mu}$ (MSSM)
 - $a_1 \rightarrow \mu \mu$ (NMSSM)

and started to estimate backgrounds and look at discriminating variables for

- Charged Higgs searches in the τν channels [for m(H[±]) < m(top)]
- With O(1 fb⁻¹) of 2011(-12) data [and longer term] these and more searches will be continued:
 - A/H/h $\rightarrow \mu\mu$
 - $H^{\pm} \rightarrow cs, [tb]$
 - [Higgses in SUSY cascades]
 - [Higgses decaying into SUSY particles (including "invisible" Higgs)]
 - ...
- 2011 has already provided over 250 pb⁻¹ of new data ...

A Toroidal Lhc ApparatuS (ATLAS)

EM calorimeter (|n|<3.2):

▶LAr calorimeter with accordion geometry for phi symmetry and faster signal readout
▶electron, photon identification and measurement
▶energy resolution : sigma/E ~ 10%/sqrt(E)

Hadronic Calorimeter (|p|<5):

Tile (steel and scintillators) calorimeter (|n|<1.7)
Cu/LAr sampling calorimeter (1.5<|n|<3.2)
Forward calorimeter (3.1<|n|<5)
Jets and Missing energy measurement
energy resolution : sigma/E ~ 50%/sqrt(E)+0.03

IV: A/H/h $\rightarrow \tau \tau \rightarrow 21 4\nu$ [MC, 14 TeV]

CERN-OPEN-2008-020 (ATLAS BOOK)

14 TeV, 30 fb⁻¹

IV: A/H/h $\rightarrow \mu\mu$ [MC, 14 TeV]

CERN-OPEN-2008-020 (ATLAS BOOK)

14 TeV, 10 fb⁻¹

IV: Charged Higgs [MC, 14 TeV]

Combined results for

- $[m(H^{\pm}) < m(t)]$: $tt \rightarrow bH^{\pm} + bW \rightarrow b\tau_{b}v + bqq$
- $[m(H^{\pm}) < m(t)]$: $tt \rightarrow bH^{\pm} + bW \rightarrow b\tau_{\nu}v + bqq$
- [m(H[±]) < m(t)]: $tt \rightarrow bH^{\pm} + bW \rightarrow b\tau_{_{h}}v + blv$
- $[m(H^{\pm}) \ge m(t)]$: $gg/gb \rightarrow t[b] + H^{\pm} \rightarrow bqq[b] + \tau_{h}v$
- $[m(H^{\pm}) > m(t)]: gg/gb \rightarrow t[b] + H^{\pm} \rightarrow bW[b] + tb \rightarrow blv[b] + bbqq$

14 TeV, 1/10/30 fb⁻¹

5σ discovery sensitivity 60 60 **CDF Run II CDF Run II** 55 55 Excluded Excluded 95% CL 95% CL 50 50 45 45 40 40 35 35 tanβ tanß 30 30 25 25 30 fb⁻¹ 20 20 30 fb⁻¹ 10 fb⁻¹ 15 15 10 fb⁻¹ 1 fb⁻¹ Scenario B 10 10 1 fb⁻¹ Scenario B 5 5 ATLAS ATLAS 200 90 110 130 150 170 200 250 400 600 90 110 130 150 170 250 400 600 m_{u⁺} [GeV] m_{u⁺} [GeV]

95% C.L. exclusion sensitivity

Børge Kile Gjelsten, Oslo U.

IV: Charged Higgs [MC, 14 TeV]

Model-independent limits CERN-OPEN-2008-020 (ATLAS BOOK) 5σ discovery sensitivity 5σ discovery sensitivity 10⁰ CDF Run II Excluded 95% CL $\sigma(t[b]H^{+}) \times BR(H^{+} \rightarrow \tau v)$ [pb] \vec{b}_{1} 10⁻¹ $\text{BR}(t \to \text{H}^{\texttt{+}}\text{b})$ 10⁻¹ 30 fb⁻¹ 10^{-2} 30 fb⁻¹ 10 fb⁻¹ 10 fb⁻¹ fb⁻¹ 1 fb⁻¹ ATLAS ATLAS 10^{-2} 120 250 110 130 140 400 90 100 150 200 300 350 450 500 550 600 m_{u⁺} [GeV] m_{µ⁺} [GeV] 95% C.L. exclusion sensitivity 95% C.L. exclusion sensitivity 10⁰ CDF Run II Excluded 95% CL σ(t[b]H⁺)×BR(H⁺→τν) [pb] 0, 0 30 fb⁻¹ 10 fb⁻¹ $\text{BR}(t \to \text{H}^{\texttt{+}}\text{b})$ 10⁻¹ 1 fb⁻¹ 10^{-1} 30 fb⁻¹ 10^{-2} 10 fb⁻¹ fb⁻¹ ATLAS ATLAS 10^{-2} 100 110 120 130 140 150 90 200 250 300 350 400 450 500 550 600 m_{H⁺} [GeV] m_{u⁺} [GeV]

Børge Kile Gjelsten, Oslo U.

Charged Higgs: Decays

H[±]: Intermediate tanβ region

Figure 4 shows the results for the tbH^+ final state as a function of tan β for the MSSM scenarios A and B. The production cross-section has a minimum at tan $\beta \approx 7$. This is caused by a minimum in the H^+tb Yukawa coupling and renders the so-called intermediate tan β region (4 < tan β < 10) which is experimentally hard to reach.

A/H/h \rightarrow TT : datadriven bck est. #1

 $Z \to \tau_{h} \tau_{e^{/\mu}}$ mass shape from embedding taus in real $Z \to \mu \mu$ events

Arbitrary Units 0.25 • Select pure $Z \rightarrow \mu\mu$ from data **ATLAS** Preliminary ATLAS Preliminary Remove muon tracks and 0.2 associated calo cells -- Z \rightarrow ττ MC - Z $\rightarrow \tau\tau$ MC Insert two taus in place of the 0.1 0.15 muons 0.08 Decay with TAUOLA 0.1 0.06 pass through ATLAS sim. \sqrt{s} = 7 TeV, Ldt = 36 pb⁻¹ $\sqrt{s}=7 \text{ TeV}, \text{ Ldt} = 36 \text{ pb}^{-1}$ Combine original µµ-0.04 0.05 subtracted event with TT-addition 0.02 Reconstruct 0^L 0^L 30 60 80 50 10 20 40 50 70 10 20 30 40 60 70 Resulting shapes agrees well $M_{\tau}^{lep,MET}$ [GeV] M^{lep,MET} [GeV] with MC Arbitrary Units 0.18 use MC (since checked) 0.18 ATLAS Preliminary ATLAS Preliminary normalise to theoretical 0.16 0.16 cross-section 0.14 -- Z \rightarrow ττ MC 0.14 • $Z \rightarrow \tau \tau MC$ 0.12 0.12 0.1 0.1 0.08 0.08 **Left:** prior to E_{τ}^{miss} and M_{τ} cut \sqrt{s} = 7 TeV, Ldt = 36 pb⁻¹ \sqrt{s} = 7 TeV, Ldt = 36 pb⁻¹ 0.06 0.06 0.04 0.04 **Right:** full selection 0.02 0.02 ot 0 0Ľ 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200 20

Børge Kile Gjelsten, Oslo U.

SUSY Higgs Searches in ATLAS

M_{rr} Visible [GeV]

M_{rr} Visible [GeV]

80

NMSSM: $a_1 \rightarrow \mu\mu$ (#4)

Børge Kile Gjelsten, Oslo U.

MSSM Higgs

Some tree-level relations:

Higgs masses (tree-level):

$$m_{h^0,H^0}^2 = \frac{1}{2} \Big(m_{A^0}^2 + m_Z^2 \mp \sqrt{(m_{A^0}^2 - m_Z^2)^2 + 4m_Z^2 m_{A^0}^2 \sin^2(2\beta)} \Big)$$
$$m_{H^{\pm}}^2 = m_{A^0}^2 + m_W^2$$

Higgs mixing angle (tree-level):

$$\frac{\sin 2\alpha}{\sin 2\beta} = -\left(\frac{m_{H^0}^2 + m_{h^0}^2}{m_{H^0}^2 - m_{h^0}^2}\right), \qquad \frac{\tan 2\alpha}{\tan 2\beta} = \left(\frac{m_{A^0}^2 + m_Z^2}{m_{A^0}^2 - m_Z^2}\right)$$

SM Higgs

Børge Kile Gjelsten, Oslo U.

SUSY Higgs Searches in ATLAS

28 / 28