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MONTE CARLO EVENT GENERATORS

En
er

gy
 sc

al
e

Hard interaction of partons  𝒪(TeV)

Parton shower

Hadronisation

Hadron decays  𝒪(MeV)

Modelling relies on: 

▸ Factorisation of different energy 
scales 

▸ Evolution from one scale to 
another
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COURSE OUTLINE

▸ Lecture 1: Monte Carlo techniques and integration 

▸ Lecture 2: Hard scattering: calculations at fixed order in 
perturbation theory 

▸ Lecture 3: Parton showers, hadronisation modelling 

▸ Lecture 4: Combining fixed order calculations with 
parton showers
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COURSE RESOURCES

▸ Black Book of Quantum Chromodynamics (Campbell, 
Huston, Krauss) 

▸ QCD and Collider Physics (Ellis, Stirling, Webber) 

▸ MCnet lectures (Gieseke, Krauss) 

▸ CERN-Fermilab lectures (Campbell) 

▸ TASI lectures (Williams) 

▸ Elements of QCD for hadron colliders (Salam)



MONTE CARLO 
TECHNIQUES
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LEARNING OBJECTIVES

By the end of this lecture, you will be able to: 

▸ List the advantages and disadvantages of Monte Carlo 
approaches to integration 

▸ Analyse Monte Carlo results and evaluate performance of 
different strategies 

▸ Suggest different applications of Monte Carlo methods to 
physical problems
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WHAT ARE WE CALCULATING?

▸ QFT gives us squared matrix elements, which we interpret 
as probabilities 

▸ We want to integrate these over phase space to produce 
predictions for the distribution of a certain variable, e.g. 
transverse momentum 

▸ Often the integration is multi-dimensional and the 
integrand is very complex. We would also like to be able 
to place arbitrary cuts, i.e. restrict integration range
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1D INTEGRATION WITH QUADRATURE METHODS

▸ Evaluate (for arbitrarily complicated  )f(x)

I = ∫
b

a
f(x)dx

▸ Numerical strategy - divide   into   intervals of width 
 ; 

▸  Evaluate the function in order to work out the area in each 
interval 

▸ Different methods use different number of evaluations

[a, b] n
h = (b − a)/n
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1D INTEGRATION WITH QUADRATURE METHODS

Trapezoidal rule
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1D INTEGRATION WITH QUADRATURE METHODS

Simpson’s rule
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1D INTEGRATION WITH QUADRATURE METHODS

▸ In general, the integral estimate has the form

̂I =
n

∑
i=1

wi f(xi)

▸ Area under the curve is approximate for a finite   - there 
are uncovered and overcovered areas 

▸ Provided that  , 

h

| f′ ′ (x) | ≤ M

̂I − I ≤
(b − a)

12
h2M ∼ n−2 Trapezoidal rule (exercise: show this!)
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1D INTEGRATION WITH QUADRATURE METHODS

▸ In general, the integral estimate has the form

̂I =
n

∑
i=1

wi f(xi)

▸ Area under the curve is approximate for a finite   - there 
are uncovered and overcovered areas 

▸ Provided that  , 

h

| f′ ′ ′ ′ (x) | ≤ M

̂I − I ≤
(b − a)

180
h4M ∼ n−4 Simpson’s rule
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HIGHER DIMENSIONAL INTEGRATION

▸ In higher dimensions we have

̂I =
n

∑
i1=1

n

∑
i2=1

…
n

∑
id=1

wi1wi2…wid f(xi1, xi2, …, xid)

▸ Can apply same principle as before - need   samples in 
each dimension, so   samples in total 

▸ Error is now   where   or   

▸ Increasing   does not help! Curse of dimensionality

n
nd

𝒪(N−r) ∼ 𝒪(n−r/d) r = 2 4

n
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THE ROUGH IDEA

▸ Regard integrand as probability 
density

dP = f(x) dx
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cos(x)

    with probability distribution

F(x) = ∫
b

a
f(x) dx

so that the probability is given by 
the area under the curve.
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HIT AND MISS APPROACH

▸ Throw   random points   into 
region volume   

▸ Count successes   whenever 
  

▸ Estimate of integral and error are 
given by

N (x, y)
V

Nwin
y < f(x)

̂I = V
Nwin

N
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δI ≡ I − ̂I ∼
1

N
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HIT AND MISS APPROACH

▸ Looks good - can handle any  , regardless of functional 
form, discontinuities… 

▸ Error goes as   for any number of dimensions! 

▸   must be bounded from above 

▸ Sampling becomes inefficient whenever   has large 
variance 

▸ Can be improved using variance reduction

f(x)

1/ N

f(x)

f(x)
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MONTE CARLO ESTIMATOR

▸ Let’s take a step back and define a random variable

FN =
(b − a)

N

N

∑
i=1

f(Xi)

where   is also a random variable drawn from  . 

‣ Average of   random function evaluations, flat sampling 
of   

▸ What is the expected value of this random variable?

Xi [a, b]

N
Xi
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MONTE CARLO ESTIMATOR

▸ What is the expected value of this random variable?

E[FN] = E [ (b − a)
N

N

∑
i=1

f(Xi)]
=

(b − a)
N

N

∑
i=1

E[ f(Xi)]

=
(b − a)

N

N

∑
i=1

∫
∞

−∞
f(x) p(x) dx

=
(b − a)

N
1

(b − a)

N

∑
i=1

∫
b

a
f(x) dx

=
1
N

N

∑
i=1

∫
b

a
f(x) dx =

1
N

N ⋅ I = I
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MONTE CARLO ESTIMATOR

▸ What is the variance of this random variable?

Var[FN] = Var [ (b − a)
N

N

∑
i=1

f(Xi)]
=

(b − a)2

N2
Var [

N

∑
i=1

f(Xi)]
=

(b − a)2

N2

N

∑
i=1

Var [f(Xi)]

=
(b − a)2

N2
NVar [f(X)]

=
1
N

Var [(b − a) f(X)]
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MONTE CARLO ESTIMATOR

▸ Chebyshev’s inequality: for a random variable  , no more 
than   of the values are more than   standard 
deviations from the mean

X
1/k2 k

P { |X − μ | ≥ kσ} ≤
1
k2

P { |X − E[X] | ≥ ( Var[X]
δ )

1/2

} ≤ δ
δ =

1
k2
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MONTE CARLO ESTIMATOR

▸ Plug in   :FN

P { |FN − I | ≥ ( 1
N )

1/2

( Var[(b − a) f(X)]
δ )

1/2

} ≤ δ

▸ For a given  , the error decreases as we increase 
the number of samples with a scaling of  . 

▸ The prefactor is the standard deviation of  .

δ = 1/k2

1/ N

f
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MONTE CARLO ESTIMATOR

▸ For   we have that f(x) = cos(x), 0 ≤ x ≤ π/2

E[ f ] = ∫
π/2

0
cos(x) dx = 1

Var[ f ] = E[ f ]2 − ∫
π/2

0
cos2(x) dx = 1 −

π
4

and therefore

σMC =
σ

N
≈

0.4633

N
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MONTE CARLO ESTIMATOR

σMC =
σ

N
≈

0.4633

N
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WHY DO MY RESULTS SUCK? #1

▸ You didn’t run enough points

100 points 10000 points
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WHY DO MY RESULTS SUCK? #2

▸ You didn’t bin properly

50 bins500 bins
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IMPORTANCE SAMPLING

▸ Consider an integral   

where   for   

▸ We could try throwing points 
uniformly in the interval   

▸ Alternatively, we could throw 
points in the interval   and 
rescale our result by 5

∫
1

0
g(x) dx

g(x) = 0 x ≥ 1

[0,1]

[0,5]
1 2 3 4 5

x

0.5

1.0

1.5

2.0

g(x)
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IMPORTANCE SAMPLING

▸ This would not be sensible - 
80% of the time we would 
learn nothing about the 
integral, because for   the 
integrand is zero.  

▸ If there are bad ways to throw 
points, are there good ways?

x ≥ 1

1 2 3 4 5
x

0.5

1.0

1.5

2.0

g(x)
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IMPORTANCE SAMPLING

▸ Let’s revisit our random variable

F′ N =
(b − a)

N

N

∑
i=1

f(Xi) =
1
N

N

∑
i=1

f(Xi)
1

(b − a)

=
1
N

N

∑
i=1

f(Xi)
p(Xi)

▸ We are not forced to throw points by sampling from a 
uniform distribution - can use an arbitrary distribution   

▸ If we draw more samples somewhere, their weights 
should be scaled down. If we draw fewer samples, we 
scale up. 

p
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IMPORTANCE SAMPLING

▸ Writing  , can show that (exercise):Yi =
f(Xi)
p(Xi)

▸ How do we choose   to minimise  ? If   then 
  and the variance is zero! 

▸ If you could sample from   then you could sample from   and 
there would be no work to do… 

▸ Choose   close to   to minimise error

p Var[F′ N] p(Xi) = λf(Xi)
Yi = λ

p f

p f

E[F′ N] = I Var[F′ N] =
1
N

Var[Y]
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INVERSION METHOD
▸ Given a uniform random number generator, how do we sample from 

 ? 

▸ Answer: uniformly sample the CDF   and invert back. 

▸ Gives dense samples at important regions in the domain, but need to 
know   and its inverse

p(x)

P(x)

P(x)
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IMPORTANCE SAMPLING

▸ Suppose 
 ; CDF isp(x) = 4(1 − 2x/π)/π

P(x) =
4
π ∫

x

0
(1 − 2u /π) du =

4x
π (1 −

x
π )

▸ For a random variable  ρ

ρ =
4x
π (1 −

x
π )

x =
π
2 (1 − 1 − ρ)
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IMPORTANCE SAMPLING

0.5 1.0 1.5
x

0.2

0.4

0.6

0.8

1.0

1.2

f (x)

I = ∫
π/2

0
cos(x) dx

= ∫
π/2

0

cos(x)

1 − 2
π x (1 −

2
π

x) dx

= ∫
1

0

π
4

cos(x)

1 − 2
π x x=x(ρ)

dρ

x =
π
2 (1 − 1 − ρ)

→ x =
π
2 (1 − ρ)
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IMPORTANCE SAMPLING
σMC,IS =

σ′ 

N
≈

0.129

N
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IMPORTANCE SAMPLING

▸ Breit-Wigner peaks appear in many cross section matrix 
elements

I = ∫
s1

s0

ds
(s − m2)2 + m2Γ2

=
1

mΓ
arctan

s − m2

mΓ

s1

s0

▸ Inversion method gives

f(s) =
mΓ

(s − m2)2 + m2Γ2

F(s) = arctan
s − m2

mΓ
= ρ

F−1(ρ) = m2 + mΓ tan ρ
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WHY DO MY RESULTS SUCK? #3

▸ Importance sampling leads to increased efficiency - fewer 
events needed to reach same accuracy

No importance sampling Importance sampled



MONTE CARLO EVENT GENERATORS AND COMPUTATIONAL PHYSICS

MULTI-CHANNEL MONTE CARLO

▸ Real matrix elements 
have complicated 
structures - multiple 
resonance peaks, s- and 
t-channel contributions 
etc. 

▸ Can encode knowledge 
of peak structure in sum 
of sample functions 
with different weights

5 10 15 20 25 30
s

0.2

0.4

0.6

g(s) = ∑
i

αi gi(s)
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MULTI-CHANNEL MONTE CARLO

▸ Rewrite ∫
s1

s0

f(s) ds = ∫
s1

s0

f(s)
g(s)

g(s) ds

= ∫
s1

s0

f(s)
g(s) ∑

i

αigi(s) ds

= ∑
i

αi ∫
s1

s0

f(s)
g(s)

gi(s) ds

▸ Select the distribution   to sample from next according 
to weights   

▸ Methods exist to automatically optimise  

gi(s)
αi

αi
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SUMMARY

▸ Monte Carlo converges slowly in few dimensions, but 
quickly in many 

▸ Functional form of integrand and domain can be arbitrarily 
complex 

▸ Easy to parallelise - start many instances with different 
seeds on a supercomputer, combine at the end 
(“embarrassingly parallel”)


