
CALCULATING 
HARD SCATTERING



MONTE CARLO EVENT GENERATORS AND COMPUTATIONAL PHYSICS

LEARNING OBJECTIVES

By the end of this lecture, you will be able to: 

▸ Describe the different ingredients that feed into a fixed 
order calculation at leading order 

▸ Outline the difficulties with calculations beyond leading 
order and common methods of dealing with them 

▸ Explain how weighted events are unweighted in order to 
simulate realistic collider outcomes
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CALCULATIONS AT FIXED ORDER IN PERTURBATION THEORY

▸ Standard Model has gauge group   

▸ Cannot compute anything exactly, so we expand in some 
(small) coupling 

▸ Strong sector of   has largest coupling/biggest effect, so 
usually compute corrections in this first - Quantum 
Chromodynamics  

▸ Allowed to do this because of asymptotic freedom - sign of   
function means that strong coupling decreases with energy

SU(3) × SU(2)L × U(1)

SU(3)

β
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FIXED ORDER CALCULATIONS

▸ At a hadron collider, cross section given by collinear 
factorisation formula

σ2→n = ∑
a,b

∫
1

0
dxadxb fa/h1

(xa, μF)fb/h2
(xb, μF) ̂σab→n(μF, μR)

= ∑
a,b

∫
1

0
dxadxb fa/h1

(xa, μF)fb/h2
(xb, μF)

1
2 ̂s ∫ dΦn |ℳab→n |2 (Φn; μF, μR)

Initial state phase space

Parton distribution functions

Flux factor

Final state phase space

Squared amplitude
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LEADING ORDER EVENT GENERATION

1. Generate phase space point  

2. Evaluate matrix element   on phase space point and 
convolve with parton luminosity 

3. Store event, specifying four momenta of all particles and 
weight = PDFs   matrix element   phase space Jacobian 

4. Repeat   times to get a set of events 

5. Analyse results - compute expected values and errors on 
set of events, apply cuts, bin in histogram 

|ℳ |2

⊗ ×

N
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PHASE SPACE GENERATION

▸ Phase space integral to be performed is over 

dΦn = [
n

∏
i=1

d4pi

(2π)4
(2π)δ(p2

i − m2
i ) Θ(Ei)] (2π)4δ4 (xaPh1

+ xbPh2
−

n

∑
i=1

pi)

Lorentz invariant volume

On-shellness condition

Positive energy

Total four-momentum conservation

▸ Can rewrite in terms of nice variables like angles, invariant 
masses etc. and then importance sample
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2 BODY PHASE SPACE

▸ Consider decay of one to two particles (e.g.   in   rest 
frame)

K → ππ K

dΦ2 =
d4p1

(2π)4
(2π) δ(p2

1 − m2
1) Θ(E1)

d4p2

(2π)4
(2π) δ(p2

2 − m2
2)Θ(E2) δ4 (pμ

K − pμ
π,1 − pμ

π,2)
=

d4p1

(2π)4
(2π) δ(p2

1 − m2
1) Θ(E1) (2π) δ [(pK − p1)2 − m2

2] Θ(MK − E1)

=
| ⃗p 1 |2 dE1 d | ⃗p 1 | d2Ω1

(2π)4
(2π) δ (E2

1 − | ⃗p 1 |2 − m2
1) Θ(E1)

× (2π) δ [(MK − E1)2 − | ⃗p 2
1 | − m2

2] Θ(MK − E1)

=
λ1/2(M2

K, m2
1, m2

2)
8M2

K

d2Ω1

(2π)2
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2 BODY PHASE SPACE

▸ Källén function given by 

λ(a, b, c) = (a − b − c)2 − 4bc

▸ Exercise: show that, when both final state particles are 
massless,

∫ dΦ2 =
1

8π
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 -BODY PHASE SPACEN

▸ Can construct  -body phase space recursively from 2-body case, 

by introducing massive intermediate states  

N

p12…(n−1) =
n−1

∑
i=1

pi

dΦn(P; p1, …, pn) = dm2
12…(n−1) dΦ2(P; p12…(n−1), pn) dΦn−1 (p12…(n−1); p1…, pn−1)

n
1

2

n

= n − 1

1
2

n − 1
2

n

P

P



MONTE CARLO EVENT GENERATORS AND COMPUTATIONAL PHYSICS

MATRIX ELEMENT EVALUATION

▸ Can do by hand at tree level for   final state particles 

▸ Beyond this, number of diagrams grows factorially

≤ 3

n gluons Number of diagrams

0 1
1 2
2 8
3 48
4 384

e+e− → qq̄ + ng
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MATRIX ELEMENT EVALUATION

▸ Textbook methods are insufficient for most realistic 
problems (squaring, completeness relations, traces) 

▸ Many helicity combinations vanish - wasted computation 

▸ Parke and Taylor (1985) computed  : 220 
diagrams, 100 pages calculation, 14 pages of result 

▸ Within a year later they realised

gg → gggg

ℳ6 =
⟨12⟩3

⟨12⟩⟨34⟩⟨45⟩⟨56⟩⟨61⟩
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MATRIX ELEMENT EVALUATION

▸ Spinor-helicity formalism trades 4-component Dirac 
spinors for 2-component left- and right-handed Weyl  

▸ Evaluate spinor brackets numerically at amplitude level, 
then square a complex number 

▸ Angular momentum conservation means some terms 
vanish immediately - no waste! 

▸ Can be sped up further with recursion relations, colour 
sampling



MONTE CARLO EVENT GENERATORS AND COMPUTATIONAL PHYSICS

MATRIX ELEMENT EVALUATION

▸ Loop amplitudes are harder. Rely on reduction of loop 
integrals to a basis of functions at one-loop:

▸ Methods to perform integral reduction: Passarino-
Veltmann/Ossau-Papadopoulos-Pittau 

▸ Two-loop much harder, basis of functions unknown
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VIRTUAL CORRECTIONS

▸ At one-loop, all integrals can be expressed in terms of 
logarithms and dilogarithms

▸ Beyond one-loop, more general functions appear

Li2(z) = − ∫
z

0

dt
t

log(1 − t)

G(a1, …, an; z) = ∫
z

0

dt
t − a1

G(a2, …, an; t)

G(a; z) = log (1 −
z
a )

Multiple polylogarithms

G(0,1; z) = − Li2(z)
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VIRTUAL CORRECTIONS

▸ At one-loop, all integrals can be expressed in terms of 
logarithms and dilogarithms

▸ Beyond one-loop, more general functions appear

Li2(z) = − ∫
z

0

dt
t

log(1 − t)

Elliptic polylogarithmsℒn(z, q) =
∞

∑
k=−∞

Lin (zqk), q = e2πiτ
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INTEGRATION-BY-PARTS IDENTITIES 

▸ At 2-loops, Feynman diagram evaluation leaves 1000s of 
integrals to be evaluated 

▸ Not all are independent! In dimensional regularisation,

0 = ∫ dDki
∂

∂kμ
i

kμ

Da1
1 …Dan

n

‣ Integration-by-parts identities - relate integrals with 
different propagator powers and solve recursively
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INTEGRATION-BY-PARTS IDENTITIES 

▸ Reduces every integral into a linear combination of basis 
vectors (`master’ integrals) 

▸  ! 

▸ In practice, use recursion relations to generate linear 
relations among integrals, and truncate tower of relations - 
system of finite size to solve 

▸ Automated using Laporta’s algorithm

Nmaster ≪ Ntotal
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INTEGRATION-BY-PARTS EXAMPLE - THE BUBBLE

Bub(n1, n2) = ∫
dDk

[k2]n1[(k + p)2]n2

Bub(n1, n2) =
n1 + n2 − 1 − D

p2(n2 − 1)
Bub(n1, n2 − 1) +

1
p2

Bub(n1 − 1,n2)

=
1
p2

Bub(n1, n2 − 1) +
n1 + n2 − 1 − D

p2(n2 − 1)
Bub(n1 − 1,n2)

0 = ∫ dDk
∂

∂kμ
kμ (…) 0 = ∫ dDk

∂
∂kμ

pμ (…)

Integral vanishes unless  n1, n2 > 0
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NEXT-TO-LEADING ORDER COMPUTATIONS
▸ Loop amplitudes themselves are divergent in the UV and 

IR. Can cure UV by renormalisation, but IR remain for   

▸ KLN theorem (with caveats) - IR divergences cancel when 
combining real and virtual corrections

k → 0

REAL

VIRTUAL
A
ϵ

+ B

−
A
ϵ

+ C
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NEXT-TO-LEADING ORDER COMPUTATIONS
▸ Loop amplitudes are divergent - manifested analytically by 

poles in dimensional regulator   

▸ Real amplitudes diverge when integrated over emission 
phase space in limits when gluon becomes soft (low 
energy) or collinear.  

▸ Cannot physically distinguish one emission here - could be 
an infinite number!

d = 4 − 2ϵ



MONTE CARLO EVENT GENERATORS AND COMPUTATIONAL PHYSICS

NEXT-TO-LEADING ORDER COMPUTATIONS
▸ Consider gluon emission off a hard incoming quark line

θ
p

k

▸ Intermediate propagator goes as  

∼
1

(p − k)2
∼

1
2p ⋅ k

∼
1

Ek(1 − cos θ)

▸ Diverges for   (soft) or   (collinear)!Ek → 0 θ → 0
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DEALING WITH IR SINGULARITIES

▸ Problem: how do we combine the divergences from virtual 
and real contributions to get something finite in four 
dimensions? 

▸ Virtual singularities live in LO phase space (same number 
of final state particles). Real singularities have an extra 
emission which must be integrated over 

▸ Need to combine the two in a way that can be integrated 
numerically, i.e. using a Monte Carlo
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DEALING WITH IR SINGULARITIES

▸ Consider a toy model: UV and IR finite Born term with   
particles in final state

n

ℬn = ∑ |ℳ(0)
n |2

▸ UV renormalised virtual correction takes the form

𝒱n =
Vn

ϵ
= ∑ |ℳ(0)

n ℳ(1)*
n |

▸ Real emission depends only on   and diverges for 
 :

x ∈ [0,1]
x → 0

ℛn(x) =
Rn(x)

x
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DEALING WITH IR SINGULARITIES

▸ Obtain NLO cross section by integrating over   and 
combining Born, real and virtual contributions:

x

σNLO = [ℬn + 𝒱n] 𝒪n + ∫
1

0
dx ℛn(x)𝒪n+1(x)

▸ Here   is an infrared-safe observable, which makes sure 
that the LO process is free of singularities. Require that

𝒪n

lim
x→0

𝒪n+1(x) = 𝒪n

Definition of IR safety



MONTE CARLO EVENT GENERATORS AND COMPUTATIONAL PHYSICS

DEALING WITH IR SINGULARITIES

▸ Obtain NLO cross section by integrating over   and 
combining Born, real and virtual contributions:

x

σNLO = [ℬn +
Vn

ϵ ] 𝒪n + ∫
1

0

dx
x

Rn(x)𝒪n+1(x)

▸ Here   is an infrared-safe observable, which makes sure 
that the LO process is free of singularities. Require that

𝒪n

lim
x→0

𝒪n+1(x) = 𝒪n

Definition of IR safety
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PHASE SPACE SLICING

▸ Let’s regulate the divergent real integral:

σ(1) =
Vn

ϵ
𝒪n + ∫

1

0

dx
x1+ϵ

Rn(x)𝒪n+1(x)

and split the range with a parameter  δ

σ(1) =
Vn

ϵ
𝒪n + ∫

δ

0

dx
x1+ϵ

Rn(x)𝒪n+1(x) + ∫
1

δ

dx
x1+ϵ

Rn(x)𝒪n+1(x)

▸ So far, just a rewriting.
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PHASE SPACE SLICING

▸ Now choose  ; in the first integral, we can approximateδ ≪ 1

Rn(x)𝒪n+1(x) ≈ Rn(0)𝒪n

to get 

σ(1) =
Vn

ϵ
𝒪n + Rn(0)𝒪n ∫

δ

0

dx
x1+ϵ

+ ∫
1

δ

dx
x1+ϵ

Rn(x)𝒪n+1(x)

= ( Vn

ϵ
+ Rn(0)∫

δ

0

dx
x1+ϵ ) 𝒪n + ∫

1

δ

dx
x1+ϵ

Rn(x)𝒪n+1(x)
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PHASE SPACE SLICING

▸ Second integral is not divergent for finite  , so can set  . 
Performing first integral, we find

δ ϵ = 0

σ(1) = ( Vn

ϵ
− Rn(0)

δ−ϵ

ϵ ) 𝒪n + ∫
1

δ

dx
x

Rn(x)𝒪n+1(x)

= [ (Vn − Rn(0))
ϵ

+ Rn(0) log δ] 𝒪n + ∫
1

δ

dx
x

Rn(x)𝒪n+1(x)

▸ To cancel real and virtual divergences, require that  .Rn(0) = Vn



MONTE CARLO EVENT GENERATORS AND COMPUTATIONAL PHYSICS

PHASE SPACE SLICING

▸ Final result is

σ(1) = Vn𝒪n log δ + ∫
1

δ

dx
x

Rn(x)𝒪n+1(x)

▸ No dependence on  , so can be integrated numerically in 
four dimensions! 

▸ Result depends on approximated real matrix element at 
small   - receives corrections  , meaning we must 
choose   small to minimise power corrections 

▸ Numerically challenging, as   is divergent at small  

ϵ

δ 𝒪(δ)
δ

Rn(x) x
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PHASE SPACE SLICING

▸ Also have to construct   term to use in the 
approximation, i.e. take the unresolved limit of real ME. 

▸ Non-trivial even at NLO, as one has to avoid overlapping 
divergences. At NNLO, much harder (two emissions). 

▸ Effective field theory approaches (SCET) can provide the 
below-cut contribution via nifty factorisation theorems and 
can disentangle soft/collinear divergences

Rn(0)𝒪n

dσ(x < δ)
dx

= H ⊗ B ⊗ B ⊗ S ⊗ J + 𝒪(δ)
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LOCAL SUBTRACTION METHODS

▸ Recall the integral we had before introducing   :δ

σ(1) =
Vn

ϵ
𝒪n + ∫

1

0

dx
x1+ϵ

Rn(x)𝒪n+1(x)

▸ Can add zero in a clever way:

σ(1) =
Vn

ϵ
𝒪n + Rn(0)𝒪n ∫

1

0

dx
x1+ϵ

+ ∫
1

0

dx
x1+ϵ

Rn(x)𝒪n+1(x) − Rn(0)𝒪n ∫
1

0

dx
x1+ϵ
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LOCAL SUBTRACTION METHODS

▸ Integrate the first term, rearrange the second:

σ(1) = ( Vn

ϵ
−

Rn(0)
ϵ ) 𝒪n + ∫

1

0

dx
x1+ϵ [Rn(x)𝒪n+1(x) − Rn(0)𝒪n]

▸ Inspect second term as   :x → 0

lim
x→0

[Rn(x)𝒪n+1(x) − Rn(0)𝒪n] = Rn(0)𝒪n+1(0) + x
d
dx

Rn(x)𝒪n+1(x)
x=0

− Rn(0)𝒪n

▸ For IR-safe observables (recall def.), this is   and so 
finite.

𝒪(x)
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LOCAL SUBTRACTION METHODS

▸ Note that we did not have to introduce any additional 
parameters. 

▸ Large cancellations still exist between subtraction term 
and real matrix element, but these can happen at the 
integrand level if the subtraction term is chosen correctly - 
numerically stable 

▸ Difficult in general to find subtraction terms which capture 
all the divergences of the matrix element, and which can 
be integrated analytically. 
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LOCAL SUBTRACTION METHODS

▸ At NLO two main methods exist: Catani-Seymour dipole 
subtraction (CS), and Frixione-Kunszt-Signer subtraction 
(FKS) - can be fully automated  

▸ At NNLO things are much harder. Many options (STRIPPER 
and antenna subtraction most developed) 

▸ At N3LO nothing exists. Only slicing methods possible (or 
different techniques altogether, such as projection-to-
Born).
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BACK TO EVENT GENERATION…

▸ We now know how to construct the weights we need for 
the phase space points we generate (up to NLO). 

▸ For given points in phase space  , we associate weights 
  calculated from ME, PDFs, cuts etc. 

▸ Potential problem - many points may have a small weight 
and contribute essentially nothing to cross section. 

▸ In Nature, events don’t have a weight - more events where 
cross section is large, fewer where it is small

⃗v i
wi
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UNWEIGHTING

▸ Solution - recalling hit-or-miss approach, do not keep all 
events, but keep event   with probability⃗v i

Pi =
wi

wmax

▸ Before - same number of events in areas of phase space 
with very different probabilities, events must carry weight 

▸ After - number of events is proportional to probability of 
areas of phase space, all events have same weight 

▸ Events distributed as in Nature!
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DEFINITION OF A MONTE CARLO EVENT GENERATOR

▸ An MC event generator produces simulated events with 
the same probability as they occur in Nature - it mimics a 
collider. 

▸ Performs a large number of difficult integrals, then 
unweights to give four momenta of detected particles 

▸ It is common to refer to codes which use MC techniques 
but do not provide fully exclusive information on the final 
state as “Monte Carlos” - these normally predict cross 
sections or kinematic distributions, but cannot be 
unweighted
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SUMMARY

▸ Hard scattering calculations depend on many ingredients: 
phase space integrals, matrix elements, parton distribution 
functions 

▸ Beyond leading order, need methods to combine real and 
virtual divergences which allow integration in four 
dimensions 

▸ When all ingredients are put together, can calculate the 
weight of each event. Need an unweighting procedure to 
general events with the same frequency as in Nature.


