CALCULATING HARD SCATTERING

LEARNING OBJECTIVES

By the end of this lecture, you will be able to:

- Describe the different ingredients that feed into a fixed order calculation at leading order
- Outline the difficulties with calculations beyond leading order and common methods of dealing with them
- Explain how weighted events are unweighted in order to simulate realistic collider outcomes

CALCULATIONS AT FIXED ORDER IN PERTURBATION THEORY

- Standard Model has gauge group $SU(3) \times SU(2)_L \times U(1)$
- Cannot compute anything exactly, so we expand in some (small) coupling
- Strong sector of SU(3) has largest coupling/biggest effect, so usually compute corrections in this first - Quantum Chromodynamics
- Allowed to do this because of asymptotic freedom sign of β function means that strong coupling decreases with energy

FIXED ORDER CALCULATIONS

At a hadron collider, cross section given by collinear factorisation formula

$$\sigma_{2 \to n} = \sum_{a,b} \int_{0}^{1} dx_{a} dx_{b} f_{a/h_{1}}(x_{a}, \mu_{F}) f_{b/h_{2}}(x_{b}, \mu_{F}) \hat{\sigma}_{ab \to n}(\mu_{F}, \mu_{R})$$

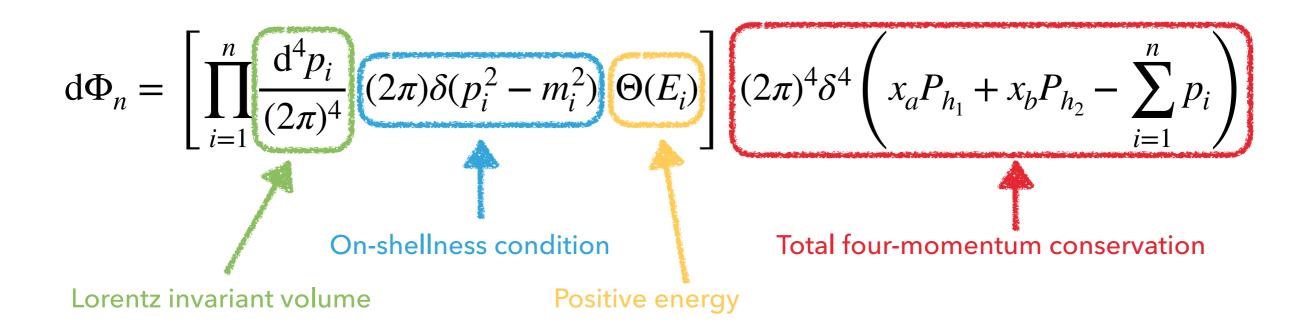
$$= \sum_{a,b} \int_{0}^{1} dx_{a} dx_{b} f_{a/h_{1}}(x_{a}, \mu_{F}) f_{b/h_{2}}(x_{b}, \mu_{F}) \frac{1}{2\hat{s}} \int d\Phi_{n} |\mathcal{M}_{ab \to n}|^{2} (\Phi_{n}; \mu_{F}, \mu_{R})$$
Initial state phase space Flux factor Squared amplitude
Parton distribution functions Final state phase space

LEADING ORDER EVENT GENERATION

- 1. Generate phase space point
- 2. Evaluate matrix element $|\mathcal{M}|^2$ on phase space point and convolve with parton luminosity
- 3. Store event, specifying four momenta of all particles and weight = PDFs ⊗ matrix element × phase space Jacobian
- 4. Repeat *N* times to get a set of events
- 5. Analyse results compute expected values and errors on set of events, apply cuts, bin in histogram

PHASE SPACE GENERATION

Phase space integral to be performed is over



Can rewrite in terms of nice variables like angles, invariant masses etc. and then importance sample

2 BODY PHASE SPACE

• Consider decay of one to two particles (e.g. $K \rightarrow \pi\pi$ in K rest frame)

$$\begin{split} \mathrm{d}\Phi_2 &= \frac{\mathrm{d}^4 p_1}{(2\pi)^4} \left(2\pi\right) \delta(p_1^2 - m_1^2) \,\Theta(E_1) \frac{\mathrm{d}^4 p_2}{(2\pi)^4} \left(2\pi\right) \delta(p_2^2 - m_2^2) \Theta(E_2) \,\delta^4 \left(p_K^\mu - p_{\pi,1}^\mu - p_{\pi,2}^\mu\right) \\ &= \frac{\mathrm{d}^4 p_1}{(2\pi)^4} \left(2\pi\right) \delta(p_1^2 - m_1^2) \,\Theta(E_1) \left(2\pi\right) \delta \left[(p_K - p_1)^2 - m_2^2\right] \,\Theta(M_K - E_1) \\ &= \frac{|\overrightarrow{p_1}|^2 \,\mathrm{d}E_1 \,\mathrm{d} |\, \overrightarrow{p_1}| \,\mathrm{d}^2 \Omega_1}{(2\pi)^4} \left(2\pi\right) \delta \left(E_1^2 - |\, \overrightarrow{p_1}\,|^2 - m_1^2\right) \,\Theta(E_1) \\ &\times \left(2\pi\right) \delta \left[(M_K - E_1)^2 - |\, \overrightarrow{p_1}\,|^2 - m_2^2\right] \,\Theta(M_K - E_1) \\ &= \frac{\lambda^{1/2} (M_K^2, m_1^2, m_2^2)}{8M_K^2} \frac{\mathrm{d}^2 \Omega_1}{(2\pi)^2} \end{split}$$

2 BODY PHASE SPACE

Källén function given by

$$\lambda(a,b,c) = (a-b-c)^2 - 4bc$$

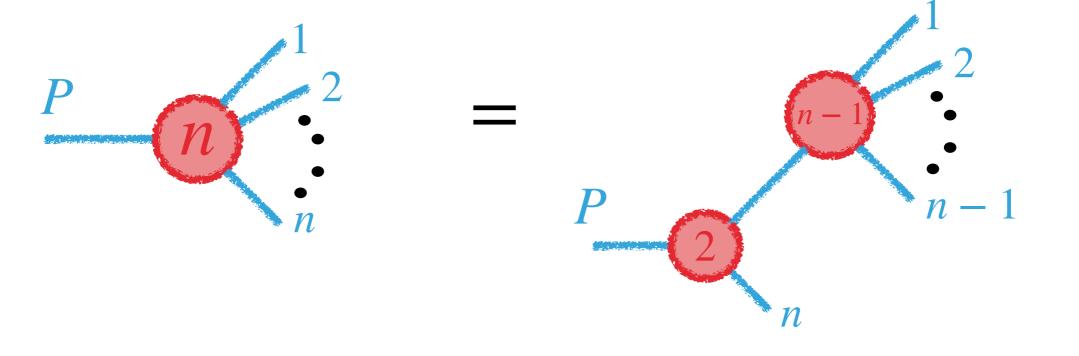
Exercise: show that, when both final state particles are massless,

$$\int \mathrm{d}\Phi_2 = \frac{1}{8\pi}$$

N-body phase space

• Can construct *N*-body phase space recursively from 2-body case, by introducing massive intermediate states $p_{12...(n-1)} = \sum_{i=1}^{n-1} p_i$

$$d\Phi_n(P; p_1, \dots, p_n) = dm_{12\dots(n-1)}^2 d\Phi_2(P; p_{12\dots(n-1)}, p_n) d\Phi_{n-1} \left(p_{12\dots(n-1)}; p_{1\dots}, p_{n-1} \right)$$



- Can do by hand at tree level for ≤ 3 final state particles
- Beyond this, number of diagrams grows factorially

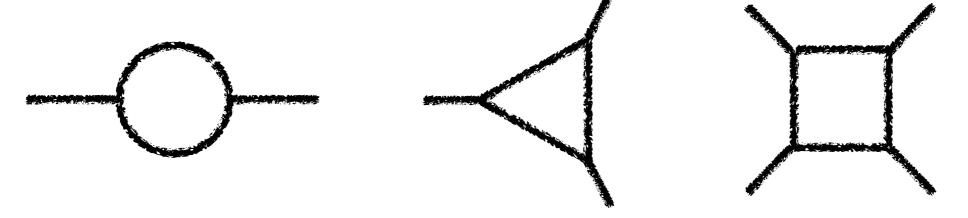
n gluons	Number of diagrams	
0	1	
1	2	$e^+e^- \rightarrow q\bar{q} + ng$
2	8	
3	48	
4	384	

- Textbook methods are insufficient for most realistic problems (squaring, completeness relations, traces)
- Many helicity combinations vanish wasted computation
- Parke and Taylor (1985) computed $gg \rightarrow gggg$: 220
 diagrams, 100 pages calculation, 14 pages of result
- Within a year later they realised

$$\mathcal{M}_{6} = \frac{\langle 12 \rangle^{3}}{\langle 12 \rangle \langle 34 \rangle \langle 45 \rangle \langle 56 \rangle \langle 61 \rangle}$$

- Spinor-helicity formalism trades 4-component Dirac spinors for 2-component left- and right-handed Weyl
- Evaluate spinor brackets numerically at amplitude level, then square a complex number
- Angular momentum conservation means some terms vanish immediately no waste!
- Can be sped up further with recursion relations, colour sampling

Loop amplitudes are harder. Rely on reduction of loop integrals to a basis of functions at one-loop:



- Methods to perform integral reduction: Passarino-Veltmann/Ossau-Papadopoulos-Pittau
- Two-loop much harder, basis of functions unknown

VIRTUAL CORRECTIONS

At one-loop, all integrals can be expressed in terms of logarithms and dilogarithms

$$\operatorname{Li}_{2}(z) = -\int_{0}^{z} \frac{\mathrm{d}t}{t} \log(1-t)$$

Beyond one-loop, more general functions appear

$$G(a_1, \dots, a_n; z) = \int_0^z \frac{\mathrm{d}t}{t - a_1} G(a_2, \dots, a_n; t)$$

Multiple polylogarithms
$$G(a; z) = \log\left(1 - \frac{z}{a}\right) \qquad G(0, 1; z) = -\operatorname{Li}_2(z)$$

VIRTUAL CORRECTIONS

At one-loop, all integrals can be expressed in terms of logarithms and dilogarithms

$$\operatorname{Li}_{2}(z) = -\int_{0}^{z} \frac{\mathrm{d}t}{t} \log(1-t)$$

Beyond one-loop, more general functions appear

$$\mathscr{L}_n(z,q) = \sum_{k=-\infty}^{\infty} \operatorname{Li}_n(zq^k), \quad q = e^{2\pi i \tau}$$
 Elliptic polylogarithms

INTEGRATION-BY-PARTS IDENTITIES

- At 2-loops, Feynman diagram evaluation leaves 1000s of integrals to be evaluated
- Not all are independent! In dimensional regularisation,

$$0 = \int \mathrm{d}^D k_i \frac{\partial}{\partial k_i^{\mu}} \frac{k^{\mu}}{D_1^{a_1} \dots D_n^{a_n}}$$

Integration-by-parts identities - relate integrals with different propagator powers and solve recursively

INTEGRATION-BY-PARTS IDENTITIES

 Reduces every integral into a linear combination of basis vectors (`master' integrals)

 $N_{master} \ll N_{total}!$

- In practice, use recursion relations to generate linear relations among integrals, and truncate tower of relations system of finite size to solve
- Automated using Laporta's algorithm

INTEGRATION-BY-PARTS EXAMPLE - THE BUBBLE

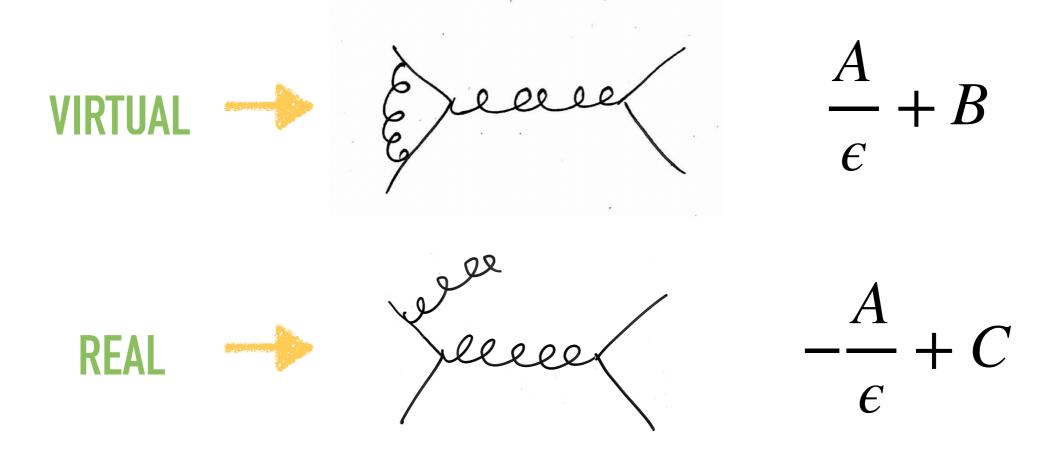
$$\operatorname{Bub}(n_1, n_2) = \int \frac{\mathrm{d}^D k}{[k^2]^{n_1}[(k+p)^2]^{n_2}} \operatorname{Integral vanishes unless} n_1, n_2 > 0$$

$$0 = \int d^D k \frac{\partial}{\partial k^{\mu}} k^{\mu} (\dots) \qquad \qquad 0 = \int d^D k \frac{\partial}{\partial k^{\mu}} p^{\mu} (\dots)$$

$$\begin{aligned} \operatorname{Bub}(n_1, n_2) &= \frac{n_1 + n_2 - 1 - D}{p^2(n_2 - 1)} \operatorname{Bub}(n_1, n_2 - 1) + \frac{1}{p^2} \operatorname{Bub}(n_1 - 1, n_2) \\ &= \frac{1}{p^2} \operatorname{Bub}(n_1, n_2 - 1) + \frac{n_1 + n_2 - 1 - D}{p^2(n_2 - 1)} \operatorname{Bub}(n_1 - 1, n_2) \end{aligned}$$

NEXT-TO-LEADING ORDER COMPUTATIONS

- Loop amplitudes themselves are divergent in the UV and IR. Can cure UV by renormalisation, but IR remain for $k \to 0$
- KLN theorem (with caveats) IR divergences cancel when combining real and virtual corrections



NEXT-TO-LEADING ORDER COMPUTATIONS

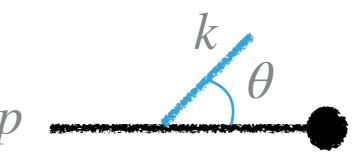
- Loop amplitudes are divergent manifested analytically by poles in dimensional regulator $d = 4 2\epsilon$
- Real amplitudes diverge when integrated over emission phase space in limits when gluon becomes soft (low energy) or collinear.
- Cannot physically distinguish one emission here could be an infinite number!

NEXT-TO-LEADING ORDER COMPUTATIONS

Consider gluon emission off a hard incoming quark line

$$\sim \frac{1}{(p-k)^2} \sim \frac{1}{2p \cdot k} \sim \frac{1}{E_k(1-\cos\theta)}$$

Diverges for $E_k \rightarrow 0$ (soft) or $\theta \rightarrow 0$ (collinear)!



- Problem: how do we combine the divergences from virtual and real contributions to get something finite in four dimensions?
- Virtual singularities live in LO phase space (same number of final state particles). Real singularities have an extra emission which must be integrated over
- Need to combine the two in a way that can be integrated numerically, i.e. using a Monte Carlo

Consider a toy model: UV and IR finite Born term with n particles in final state

$$\mathscr{B}_n = \sum |\mathscr{M}_n^{(0)}|^2$$

UV renormalised virtual correction takes the form

$$\mathcal{V}_n = \frac{V_n}{\epsilon} = \sum |\mathcal{M}_n^{(0)} \mathcal{M}_n^{(1)*}|$$

▶ Real emission depends only on $x \in [0,1]$ and diverges for $x \to 0$: $\mathscr{R}_n(x) = \frac{R_n(x)}{R_n(x)}$

Obtain NLO cross section by integrating over x and combining Born, real and virtual contributions:

$$\sigma^{\text{NLO}} = \left[\mathscr{B}_n + \mathscr{V}_n\right] \mathscr{O}_n + \int_0^1 \mathrm{d}x \,\mathscr{R}_n(x) \mathscr{O}_{n+1}(x)$$

• Here \mathcal{O}_n is an infrared-safe observable, which makes sure that the LO process is free of singularities. Require that

$$\lim_{x \to 0} \mathcal{O}_{n+1}(x) = \mathcal{O}_n$$

Definition of IR safety

Obtain NLO cross section by integrating over x and combining Born, real and virtual contributions:

$$\sigma^{\text{NLO}} = \left[\mathscr{B}_n + \frac{V_n}{\epsilon}\right] \mathscr{O}_n + \int_0^1 \frac{\mathrm{d}x}{x} R_n(x) \mathscr{O}_{n+1}(x)$$

• Here \mathcal{O}_n is an infrared-safe observable, which makes sure that the LO process is free of singularities. Require that

$$\lim_{x \to 0} \mathcal{O}_{n+1}(x) = \mathcal{O}_n$$

Definition of IR safety

Let's regulate the divergent real integral:

$$\sigma^{(1)} = \frac{V_n}{\epsilon} \mathcal{O}_n + \int_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} R_n(x) \mathcal{O}_{n+1}(x)$$

and split the range with a parameter δ

$$\sigma^{(1)} = \frac{V_n}{\epsilon} \mathcal{O}_n + \int_0^{\delta} \frac{\mathrm{d}x}{x^{1+\epsilon}} R_n(x) \mathcal{O}_{n+1}(x) + \int_{\delta}^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} R_n(x) \mathcal{O}_{n+1}(x)$$

So far, just a rewriting.

Now choose $\delta \ll 1$; in the first integral, we can approximate

 $R_n(x)\mathcal{O}_{n+1}(x) \approx R_n(0)\mathcal{O}_n$

to get

$$\sigma^{(1)} = \frac{V_n}{\epsilon} \mathcal{O}_n + R_n(0) \mathcal{O}_n \int_0^\delta \frac{\mathrm{d}x}{x^{1+\epsilon}} + \int_\delta^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} R_n(x) \mathcal{O}_{n+1}(x)$$
$$= \left(\frac{V_n}{\epsilon} + R_n(0) \int_0^\delta \frac{\mathrm{d}x}{x^{1+\epsilon}}\right) \mathcal{O}_n + \int_\delta^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} R_n(x) \mathcal{O}_{n+1}(x)$$

Second integral is not divergent for finite δ , so can set $\epsilon = 0$. Performing first integral, we find

$$\sigma^{(1)} = \left(\frac{V_n}{\epsilon} - R_n(0)\frac{\delta^{-\epsilon}}{\epsilon}\right)\mathcal{O}_n + \int_{\delta}^1 \frac{\mathrm{d}x}{x} R_n(x)\mathcal{O}_{n+1}(x)$$
$$= \left[\frac{\left(V_n - R_n(0)\right)}{\epsilon} + R_n(0)\log\delta\right]\mathcal{O}_n + \int_{\delta}^1 \frac{\mathrm{d}x}{x} R_n(x)\mathcal{O}_{n+1}(x)$$

To cancel real and virtual divergences, require that $R_n(0) = V_n$.

Final result is

$$\sigma^{(1)} = V_n \mathcal{O}_n \log \delta + \int_{\delta}^{1} \frac{\mathrm{d}x}{x} R_n(x) \mathcal{O}_{n+1}(x)$$

- No dependence on e, so can be integrated numerically in four dimensions!
- Result depends on approximated real matrix element at small δ - receives corrections O(δ), meaning we must choose δ small to minimise power corrections
- Numerically challenging, as $R_n(x)$ is divergent at small x

- Also have to construct $R_n(0)\mathcal{O}_n$ term to use in the approximation, i.e. take the unresolved limit of real ME.
- Non-trivial even at NLO, as one has to avoid overlapping divergences. At NNLO, much harder (two emissions).
- Effective field theory approaches (SCET) can provide the below-cut contribution via nifty factorisation theorems and can disentangle soft/collinear divergences

$$\frac{\mathrm{d}\sigma(x < \delta)}{\mathrm{d}x} = H \otimes B \otimes B \otimes S \otimes J + \mathcal{O}(\delta)$$

Recall the integral we had before introducing δ :

$$\sigma^{(1)} = \frac{V_n}{\epsilon} \mathcal{O}_n + \int_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} R_n(x) \mathcal{O}_{n+1}(x)$$

Can add zero in a clever way:

$$\sigma^{(1)} = \frac{V_n}{\epsilon} \mathcal{O}_n + R_n(0) \mathcal{O}_n \int_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} + \int_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} R_n(x) \mathcal{O}_{n+1}(x) - R_n(0) \mathcal{O}_n \int_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}}$$

Integrate the first term, rearrange the second:

$$\sigma^{(1)} = \left(\frac{V_n}{\epsilon} - \frac{R_n(0)}{\epsilon}\right)\mathcal{O}_n + \int_0^1 \frac{\mathrm{d}x}{x^{1+\epsilon}} \left[R_n(x)\mathcal{O}_{n+1}(x) - R_n(0)\mathcal{O}_n\right]$$

Inspect second term as $x \to 0$:

$$\lim_{x \to 0} \left[R_n(x) \mathcal{O}_{n+1}(x) - R_n(0) \mathcal{O}_n \right] = R_n(0) \mathcal{O}_{n+1}(0) + x \frac{\mathrm{d}}{\mathrm{d}x} R_n(x) \mathcal{O}_{n+1}(x) \Big|_{x=0} - R_n(0) \mathcal{O}_n$$

For IR-safe observables (recall def.), this is O(x) and so finite.

- Note that we did not have to introduce any additional parameters.
- Large cancellations still exist between subtraction term and real matrix element, but these can happen at the integrand level if the subtraction term is chosen correctly numerically stable
- Difficult in general to find subtraction terms which capture all the divergences of the matrix element, and which can be integrated analytically.

- At NLO two main methods exist: Catani-Seymour dipole subtraction (CS), and Frixione-Kunszt-Signer subtraction (FKS) - can be fully automated
- At NNLO things are much harder. Many options (STRIPPER and antenna subtraction most developed)
- At N3LO nothing exists. Only slicing methods possible (or different techniques altogether, such as projection-to-Born).

BACK TO EVENT GENERATION...

- We now know how to construct the weights we need for the phase space points we generate (up to NLO).
- For given points in phase space \vec{v}_i , we associate weights w_i calculated from ME, PDFs, cuts etc.
- Potential problem many points may have a small weight and contribute essentially nothing to cross section.
- In Nature, events don't have a weight more events where cross section is large, fewer where it is small

UNWEIGHTING

Solution - recalling hit-or-miss approach, do not keep all events, but keep event \vec{v}_i with probability

$$P_i = \frac{w_i}{w_{\text{max}}}$$

- Before same number of events in areas of phase space with very different probabilities, events must carry weight
- After number of events is proportional to probability of areas of phase space, all events have same weight
- Events distributed as in Nature!

DEFINITION OF A MONTE CARLO EVENT GENERATOR

- An MC event generator produces simulated events with the same probability as they occur in Nature - it mimics a collider.
- Performs a large number of difficult integrals, then unweights to give four momenta of detected particles
- It is common to refer to codes which use MC techniques but do not provide fully exclusive information on the final state as "Monte Carlos" - these normally predict cross sections or kinematic distributions, but cannot be unweighted

SUMMARY

- Hard scattering calculations depend on many ingredients: phase space integrals, matrix elements, parton distribution functions
- Beyond leading order, need methods to combine real and virtual divergences which allow integration in four dimensions
- When all ingredients are put together, can calculate the weight of each event. Need an unweighting procedure to general events with the same frequency as in Nature.