
LECTURE 2

Energy momentum tensor of GWs
In general we can have GW propagating
around a dynamical background gov instead
of flat space with jazz The metric
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satisfies Einstein equations To have a clear
distinction between the background and the

GW we need a large spatial variation of the

background compared to that of the GW
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or alternatively that hav is peaked at a large

frequency f such that
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In these regimes one can define an energy
momentum tensor for GNS We will use

Noether's theorem for spacetime translation
symmetry which leads to the following
conserved energy momentum tensor
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where the average is over a volume of size l

with Falco La or alternatively over a timescale I
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Using Eg 2 in Lorentzgauge Eg41 t 5 0 we find
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so that
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Thisresult can also be obtained from the low frequency
part of Einstein equations In fact Eg 22 is

invariant under linearized diffeomorphisms so for
simplicity we can evaluate it in TT gauge Thus
the GWenergydensity is
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3 Inside LS we can integrateby parts both time and spatial
derivatives since for a wave solution f we have af n 2xf Thus
we can choose the approptate one for a time or spatial average The
boundary terms are of order A Lis so theycan beneglected



Far away from sources tho is conserved Dtm o

out near sources the conservation of the total energy
momentum tensor is
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where Om is the covariant derivative of the

background metric gov and Tmr describes
the external sources

Away from sources we define the energy flux of

Gw If II where Ev is the GW energy in a

volume V
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combining this with Eg 23 we find
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The energy flow through a surface in frequency
domain See Eg 15 is given by

If IgIdf f h flt hi fl 27

where we got rid of the average byexplicitly performingthe
integral This allows us to find the energy spectrum
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to GWsensitivitycurvesPowerRadiated in GW's 1408.0740

Given a system of dynamical matter we want
to compute the power radiated in GW's by this

system We work in the weak field 1hm l et
and low velocity small typical velocites of the
matter sources limit

From Eg 8 we can write the gravitonsolution
as
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where the retarded Green's function solves

OxGr x x 1 8 x x and is given by
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are coordinate
with frets t I f Ill at the source

so that after projecting to TT gauge using Egs
16 and17 we find
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Assuming we are observing far from the source

we can expand X X I I IN X I

so that
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where defined ve x We can further expand
the energy momentum tensor assuming a slowly
Varying source For a purely gravitational system
this is not an assumption but a requirement of

the weak field approximation From the trivial

theorem v2 n Gym n h act Then
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where we will neglect the second and

higher order terms which are suppressed
by the slow motion of the source

Now we use the conservation of Tau
to rewrite Tab in terms of too and also

integrate by parts obtaining
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where X y kiy'tNyi and I I fax Here
we can use ant Io since we work in the
linearized theory and ignore back reaction from

GW's the tar contribution

Poting all the above together we find
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where we used too p the energy density

Remberingthat the quadrupole moment is given by

Q is d xp xix's I regis
are get the famous quadrupole radiation formula
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There are no monopole or dipole contributions
since the mass and momentum conservation of

the source imply
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The power radiated is given by

II a
chithit Aisin É Qiu

37

thus
pound Gao s 6381

Binary Systems
We consider two masses me me with relative
coordinate Io In Az undergoing circular
motion
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so that their mass momenta is

iii
whose tracelesspart gives the quadrupole Q We

now find that for a wave traveling in the direction
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We can now assume that the distance to the GW
source r is almost constant and a coordinate
system with 0 fixed Thus 0 measures the

inclination out the line of sight and translating
time so that zwtrett 20 at tartzoffotwe find
4 This can be found by first computing this for a ware
traveling in E direction and the applying a rotation to Mi
of the form Mij RiKRIMke
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Since the binary is held together by gravity
we have
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so that R GM wi then we have
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where few Waw za the GW frequency is
twice of that of the source waw Zws and
the chirp mass is
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The power radiated is
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Direct calc t EFT's
Amplitudes

Post Newtonian Given Numerical
BH perturbationPost Minkowskian Gay GR theory

leadingorder
TA Br o 2g

determines determines
chirp mass total mass

Athigher
PNorders
can determine

Mma but
there is a
degeneracy
with spins
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